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Abstract

Petermichl’s representation for the Hilbert transform as an average of dyadic shifts has important applications. Here it is shown
that the integrals involved in (a variant of) this representation converge both almost everywhere and strongly in Lp(R), p ∈ (1,∞),
which improves on the earlier result of weak convergence in L2(R). To cite this article: T. Hytönen, C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La translation dyadique de Petermichl et la transformée d’Hilbert. La représentation, dû à Petermichl, pour la transformée
d’Hilbert comme une moyenne des translations dyadiques a des applications importantes. Ici, on montre que les integrals dans
(une forme de) cette représentation convergent à la fois presque partout et fortement dans Lp(R), p ∈ (1,∞), ce qui améliore le
résultat antérieur que affirme la convergence faible dans L2(R). Pour citer cet article : T. Hytönen, C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a finite interval I = [a, b) ⊂ R, denote its left and right halves by I− := [a, (a + b)/2) and I+ := [(a +
b)/2, b). The associated standard Haar function is defined by hI := |I |−1/2(1I− − 1I+) and a modified Haar function
by HI := 2−1/2(hI− − hI+), both normalized in L2(R).

Given a dyadic system of intervals D (what it means precisely, will be specified below), the associated dyadic
shift, introduced by Petermichl [3], is defined by

IIIf :=
∑
I∈D

HI 〈hI , f 〉,

where 〈g,f 〉 := ∫ ∞
−∞ g(x)f (x)dx and the letter III (‘sha’) stands for shift. The importance of this shift operator lies

in the bridge which it provides between the probabilistic–combinatorial and the analytic realms. On the one hand,
it is closely related to discrete martingale transforms and the simple structure of the operator makes it tractable to
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combinatorial considerations involving induction on the scales; on the other hand, the prototype singular integral
operator, the Hilbert transform

Hf (x) := lim
ε→0

R→∞
Hε,Rf (x), Hε,Rf (x) := 1

π

∫
ε<|y|<R

f (x − y)

y
dy, (1)

is, in a sense, an average of the dyadic shifts related to different dyadic systems, as shown in [3].
There are other representations of singular integrals in terms of transformations of the Haar basis, cf. [1], but an

advantage of Petermichl’s III is the strong localization property that the supports of IIIhI and hI agree for all Haar
functions hI . This seems to be crucial when working in the weighted Lp(w) spaces, with which many of the recent
applications of the dyadic shift are involved [4,5].

With the recent success of the dyadic shifts, it seems interesting to look back at the precise connection of these
operators and the Hilbert transform. What was actually shown in [3] is that aH + Mb , with some a ∈ R \ {0} and Mb

the pointwise multiplication operator by a function b ∈ L∞(R), lies in the weak operator closure in L(L2(R)) of the
convex hull of the dyadic shifts. However, it turns out that the Hilbert transform is an average of the dyadic shifts in a
much stronger sense:

Theorem 1.1. For r ∈ [1,2) and β ∈ {0,1}Z, let IIIβ,r be the dyadic shift associated to the dyadic system rDβ ,
as defined in Section 2. Let μ stand for the canonical probability measure on {0,1}Z which makes the coordinate
functions βj independent with μ(βj = 0) = μ(βj = 1) = 1/2. Then for all p ∈ (1,∞) and f ∈ Lp(R),

Hf (x) = − 8

π
〈III〉f (x) := − 8

π

2∫
1

∫
{0,1}Z

IIIβ,rf (x)dμ(β)
dr

r
,

where the integral converges both pointwise for a.e. x ∈ R and also in the sense of an Lp(R)-valued Bochner integral.

This is the present contribution, proven in the rest of the Note.

2. Dyadic systems and shifts

Recall that the standard dyadic system is

D0 :=
⋃
j∈Z

D0
j , D0

j := {
2j

([0,1) + k
)
: k ∈ Z

}
.

A general dyadic system may be defined as a collection D = ⋃
j∈Z

Dj , where Dj = Dj + xj for some xj ∈ R and

the partition Dj refines Dj+1 for each j ∈ Z. Since only the value of xj mod 2j is relevant for the definition of Dj ,
one may choose xj ∈ [0,2j ), and the refinement property requires that xj+1 − xj ∈ {0,2j }. It follows by recursion
that

xj =
∑
i<j

2iβi, β = (βi)i∈Z ∈ {0,1}Z.

In this way, the set {0,1}Z gives a natural parameterization of all dyadic systems as described. Denote

Dβ :=
⋃
j∈Z

D
β
j , D

β
j := D0

j +
∑
i<j

2iβi .

This parameterization is implicitly behind the notion of random dyadic systems as used by Nazarov, Treil and
Volberg in the proof of their non-homogeneous T b theorem [2, Sec. 9.1], but it was not similarly formulated there.
When {0,1}Z is equipped with the probability measure μ as defined in Theorem 1.1, one gets the same random
distribution of dyadic systems as in their paper.

Note that the dyadic systems as defined here are more general than just translates of the standard system. The
characteristic property of systems of the form D0 + x, x ∈ R, is the existence of a special point, namely x, which
does not belong to the interior of any dyadic interval I ∈ D0 + x, whereas for a general dyadic system such a point
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may or may not exist. One can check that Dβ is of the form D0 + x for some x ∈ R if and only if βj is constant for
large j ; thus under the distribution μ, such systems have a vanishing probability.

Finally, one defines the scaled dyadic systems

rDβ := {
rI = [ra, rb): I = [a, b) ∈ Dβ

}
, r ∈ [1,2).

Observe the definition of rI above, which is not the central dilation commonly denoted like this in harmonic analysis.
One could consider r ∈ (0,∞), but this would not add any new systems when both r and β are allowed to vary.

The dyadic shift associated to rDβ is

IIIβ,rf :=
∑

I∈rDβ

HI 〈hI , f 〉 =
∑
j∈Z

∑
I∈rD

β
j

HI 〈hI , f 〉. (2)

It follows easily from Burkholder’s inequality for martingale transforms that partial sums of the j -series above give
uniformly bounded operators on Lp(R), p ∈ (1,∞); cf. [5, Theorem 3.1]. Then the convergence of the double series
both in Lp(R) and pointwise a.e. is deduced by standard considerations. Note that the partial sums of the j -series
are differences of two conditional expectations of IIIβ,rf , and hence dominated by Mβ,r(IIIβ,rf ), where Mβ,r is
the dyadic maximal operator related to the scaled dyadic system rDβ . From the boundedness of Mβ,r and IIIβ,r on
Lp(R), with bounds independent of (β, r), one easily deduces by dominated convergence that the integral defining
the average dyadic shift in Theorem 1.1 exists, pointwise a.e. and in Lp(R), and satisfies

〈III〉f := lim
n→+∞
m→−∞

n∑
j=m

2∫
1

∫
{0,1}Z

∑
I∈rD

β
j

HI 〈hI , f 〉dμ(β)
dr

r
. (3)

3. Evaluation of the integral

Observe that

rD
β
j = r2j

{
[0,1) + k +

∑
i<j

2i−j βi; k ∈ Z

}
.

When each of the numbers βj is independently chosen from {0,1}, both values having equal probability, the binary
expansion u := ∑

i<j 2i−jβi is uniformly distributed over [0,1). When, in addition, k runs through Z, the sum k + u

runs through all of R. With these observations, and introducing the new variable t := 2j r , one transforms (3) into the
form

〈III〉f (x) =
∞∫

0

∞∫
−∞

Ht([0,1)+v)(x)〈ht([0,1)+v), f 〉dv
dt

t
,

=
∞∫

0

∞∫
−∞

1

t

∞∫
−∞

H[0,1)

(
x

t
− v

)
h[0,1)

(
y

t
− v

)
dv f (y)dy

dt

t
,

where
∫ ∞

0 is actually short-hand for the indefinite integral limm,n→∞
∫ 2+n

2−m , and the limit exists in Lp(R) as well as
pointwise a.e.

The innermost integral above was already encountered and evaluated in [3]: as observed there, this is most eas-
ily done by recognizing it as the integral of the function (ξ, η) �→ H[0,1)(ξ)h[0,1)(η) (which is piecewise constant
on certain rectangles) along the straight line containing the point (x/t, y/t) and having slope 1. The result de-
pends only on u := x/t − y/t and is the piecewise linear function k(u) of this variable, which takes the values
0,− 1

4 ,0, 3
4 ,0,− 3

4 ,0, 1
4 ,0 at the points −1,− 3

4 , . . . , 3
4 ,1, interpolates linearly between them, and vanishes out off

(−1,1). So

〈III〉f (x) =
∞∫ ∞∫

1

t
k

(
x

t
− y

t

)
f (y)dy

dt

t
=

∞∫
kt ∗ f (x)

dt

t
,

0 −∞ 0
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where kt (x) := t−1k(t−1x) and k ∗ f are the usual L1-dilation and convolution, respectively.
Denote K(x) := ∫ x

0 k(u)du and φ(x) := x−1K(x)1[−1,1](x). With this notation,

R∫
ε

kt (x)
dt

t
= 1

x

[
K(x/ε) − K(x/R)

] = φε(x) − φR(x) − 1

8x
1ε<|x|<R,

and then
R∫

ε

kt ∗ f
dt

t
= φε ∗ f − φR ∗ f − π

8
Hε,Rf,

where Hε,R is the truncated Hilbert transform as defined in (1).
As k is odd, its primitive K is even, and φ is again an odd function. It is also bounded and compactly supported.

Thus it follows from standard mollification results that φt ∗ f → 0, both in Lp(R) and pointwise a.e., as either t → 0
or t → ∞. Hence

〈III〉f = −π

8
lim

n→+∞
m→−∞

H2m,2nf =: −π

8
Hf.

Note that the existence of the limit was a consequence of the proof, building at the bottom on martingale con-
vergence; none of the well-known results concerning the Lp(R) boundedness of the Hilbert transform nor the
convergence of its truncated versions was presupposed, but all this follows as a byproduct of the established rep-
resentation.
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