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Abstract

Given two fields of positive definite symmetric, and symmetric, matrices defined over a simply-connected open subset ω ⊂ R
2,

the fundamental theorem of surface theory asserts that, if these fields satisfy the Gauss and Codazzi–Mainardi relations in ω, then
there exists an immersion θ from ω into R

3 such that these fields are the two fundamental forms of the surface θ(ω)

We show here that a new compatibility relation, shown to be necessary by C. Vallée and D. Fortuné in 1996 through the intro-
duction, following an idea of G. Darboux, of a rotation field on a surface, is also sufficient for the existence of such an immersion θ .
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Résumé

Justification de la condition de compatibilité de Darboux–Vallée–Fortuné en théorie des surfaces. Etant donné deux champs
suffisamment réguliers définis dans un ouvert simplement connexe ω ⊂ R

2, l’un de matrices symétriques définies positives et l’autre
de matrices symétriques, le théorème fondamental de la théorie des surfaces affirme que, si ces deux champs satisfont les relations
de Gauss et Codazzi–Mainardi dans ω, alors il existe une immersion θ de ω dans R

3 telle que ces champs soient les deux formes
fondamentales de la surface θ(ω).

On montre ici qu’une nouvelle relation de compatibilité, dont C. Vallée et D. Fortuné ont montré en 1996 la nécessité en suivant
une idée de G. Darboux, est également suffisante pour l’existence d’une telle immersion θ . Pour citer cet article : P.G. Ciarlet,
O. Iosifescu, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let ω be an open subset of R
2 and let θ ∈ C 3(ω;R

3) be an immersion. The first and second fundamental forms
(aαβ) ∈ C 2(ω;S

2
>) and (bαβ) ∈ C 1(ω;S

2
>) of the surface θ(ω) ⊂ R

3 are then defined by means of their covariant
components

aαβ := ∂αθ · ∂βθ and bαβ := ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | .

The matrix fields (aαβ) and (βαβ) cannot be arbitrary: Let Cαβτ := 1
2 (∂βaατ + ∂αaβτ − ∂τ aαβ) and Cσ

αβ :=
aστCαβτ , where (aστ ) := (aαβ)−1. Then the Gauss and Codazzi–Mainardi compatibility relations, viz.

∂βCαστ − ∂σ Cαβτ + Cν
αβCστν − Cν

ασ Cβτν = bασ bβτ − bαβbστ , (1)

∂βbασ − ∂σ bαβ + Cν
ασ bβν − Cν

αβbσν = 0, (2)

necessarily hold in ω.
When ω is simply-connected, the relations (1)–(2) become also sufficient for the existence of such a mapping θ ,

according to the following classical fundamental theorem of surface theory: Let ω ⊂ R
2 be open and simply-connected

and let (aαβ) ∈ C 2(ω;S
2
>) and (bαβ) ∈ C 1(ω;S

2) satisfy the Gauss and Codazzi–Mainardi compatibility relations in ω.
Then there exists an immersion θ ∈ C 3(ω;R

3) such that (aαβ) and (bαβ) are the first and second fundamental forms
of the surface θ(ω).

The purpose of this Note is to show that the Gauss and Codazzi–Mainardi relations can be replaced by a different,
more “geometrical” and substantially simpler, necessary compatibility relation that has been obtained in vector form,
through the introduction of an appropriate rotation field on a surface, by Vallée and Fortuné [11], following an idea
that goes back to Darboux [3].

It is to be emphasized that the most striking feature of the Darboux–Vallée–Fortuné compatibility relation is
its geometrical nature, illustrated by its relation to a surface rotation field. That, by contrast with the Gauss and
Codazzi–Mainardi equations, the Christoffel symbols do not appear in the Darboux–Vallée–Fortuné relation is equally
noteworthy.

Particularly relevant to the present work are the interesting analyses of Pietraszkiewicz and Vallée [8], Pietraszkie-
wicz and Szwabowicz [6], and Pietraszkiewicz, Szwabowicz and Vallée [7], who showed how the midsurface of a
deformed thin shell can be reconstructed from the knowledge of the undeformed midsurface and of the surface strains
and bendings. In particular, these authors also use in a crucial way the polar factorization of the deformation gradient
of the midsurface.

2. Notations

Latin and Greek indices range respectively in {1,2,3} and {1,2} and the summation convention with respect to
repeated indices is used. The symbols M

n,M
m×n,S

n, and S
n
> designate the sets of all n×n,m×n,n×n symmetric,

and n × n positive definite symmetric, real matrices.
Given any matrix A ∈ M

n, its cofactor matrix (also a matrix in M
n) is denoted COF A. Given any matrix C ∈ S

n
>,

there exists a unique matrix U ∈ S
n
> such that U2 = C. The matrix U is denoted C1/2.

The coordinates of a point x ∈ R
3 are denoted xi and partial derivatives operators of the first order are devoted ∂i .

The coordinates of a point y ∈ R
2 are denoted yα and partial derivatives of the first and second order are denoted ∂α

and ∂αβ .
Given a mapping � = (Θi) ∈ D′(Ω;R

3), the matrix field ∇� ∈ D′(Ω;M
3) is defined by (∇�)ij = ∂jΘi . Given

a matrix field A = (aij ) ∈ D′(Ω;M
3), the matrix field CURL A ∈ D′(Ω;M

3) is that whose i-th row vector is the
rotational of the i-th row vector of A.

3. A new formulation of the fundamental theorem of Riemannian geometry in R
3

The fundamental theorem of Riemannian geometry in R
3 classically asserts that, if the Riemann curvature tensor

associated with a field C ∈ C 1(Ω;S
3
>) vanishes in a simply-connected open subset Ω of R

3, then C is the metric
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tensor field of a manifold isometrically embedded in R
3, i.e., there exists an immersion � ∈ C 2(Ω;R

3) such that
C = ∇�T ∇� in Ω (for a proof under this weakened regularity assumptions, see [4]).

It has recently been shown in [1] that a similar existence theorem holds, but under a different compatibility relation,
this time involving the square root of the matrix field C. More specifically, the following new formulation of the
fundamental theorem of Riemannian geometry in R

3 has been established in Theorem 6.2 in [1].

Theorem 1. Let Ω be a simply-connected open subset of R
3 and let C ∈ C 1(Ω;S

3
>) be a matrix field that satisfies the

Shield–Vallée compatibility relation (so named after Shield [9] and Vallée [10]):

CURL� + COF� = 0 in D′(Ω;M
3), (3)

where the matrix field � ∈ C 0(Ω;M
3) is defined in terms of the matrix field C by

� := 1

det Ũ
Ũ

{
(CURL Ũ)T Ũ − 1

2

(
tr
[
(CURL Ũ)T Ũ

])
I
}
, where Ũ := C1/2 ∈ C 1(Ω;S

3
>

)
. (4)

Then there exists an immersion � ∈ C 2(Ω;R
3) that satisfies

∇�T ∇� = C in C 1(Ω;S
3
>

)
. (5)

Such an immersion � becomes uniquely defined if Ω is connected and conditions such as

�(x0) = a0 and ∇�(x0) = F0 (6)

are imposed, where x0 ∈ Ω,a0 ∈ R
3, and F0 ∈ M

3 is any matrix that satisfies FT
0 F0 = C(x0) ( for instance, F0 =

(C(x0))
1/2).

Theorem 1 is the point of departure for our subsequent analysis.

4. A new formulation of the fundamental theorem of surface theory

We now state the main result of this paper, viz., that the Darboux–Vallée–Fortuné compatibility relation (cf. (7)
below; so named after Darboux [3] and Vallée and Fortuné [11]), which was shown in [11] to be necessarily satisfied
by the matrix fields (aαβ) : ω → S

2
> and (bαβ) : ω → S

2 associated with a given smooth immersion θ : ω → R
3, are

also sufficient for the existence of such an immersion θ : ω → R
3 if the open set ω ⊂ R

2 is simply-connected.

Theorem 2. Let ω be simply-connected open subset of R
2 and let A = (aαβ) ∈ C 1(ω;S

2
>) and B = (bαβ) ∈ C 1(ω;S

2)

be two matrix fields that satisfy the Darboux–Vallée–Fortuné compatibility relation

∂2λ1 − ∂1λ2 = λ1 ∧ λ2 in D′(ω;R
3), (7)

where the components λαβ ∈ C 1(ω) and λ3β ∈ C 0(ω) of the two vector fields λβ = (λiβ) : ω → R
3 are defined in terms

of the matrix fields A and B by the matrix equations(
λ11 λ12

λ21 λ22

)
:= −JA−1/2B, (8)

(λ31; λ32) := (
∂2u

0
11 − ∂1u

0
12; ∂2u

0
21 − ∂1u

0
22

)
JA−1/2J, (9)

where

J :=
(

0 −1

1 0

)
and

(
u0

αβ

) := A1/2 ∈ C 1(ω;S
2
>

)
. (10)

Then there exists an immersion θ ∈ C 2(ω;R
3) such that

∂αθ · ∂βθ = aαβ in C 1(ω) and ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | = bαβ in C 0(ω). (11)
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Sketch of proof. We only indicate here, without proofs, the successive steps of the proof, which is otherwise long
and technical. Complete details are found in [2].

(i) Let ω0 be an open subset of R
2 such that ω0 is a compact subset of ω. Then there exists ε0 = ε0(ω0) > 0 such

that {A(y) − 2x3B(y) + x2
3B(y)A−1(y)B(y)} ∈ S

2
> for all (y, x3) ∈ Ω0, and tr(A(y)1/2 − x3 tr(B(y)A(y)−1/2) >

0 for all (y, x3) ∈ Ω0, where Ω0 := ω0×]–ε0, ε0[.
To see this, it suffices to combine a straightforward compactness-continuity argument with the assumptions that

A ∈ C 1(ω;S
2
>) and B ∈ C 1(ω;S

2).
(ii) Define the matrix field

U := (
A − 2x3B + x2

3B−1AB
)1/2 ∈ C 1(Ω0;S

2
>

)
.

Then the field U is also given by

U = QT
(
A1/2 − x3A−1/2B

)
,

where (Q)11 = (Q)22 = cosϕ, (Q)21 = −(Q)12 = sinϕ, the function ϕ ∈ C 1(Ω0) being defined by

ϕ := arctan

(
x3 tr(BJA−1/2)

tr A1/2 − x3 tr(BA−1/2)

)
with J :=

(
0 −1

1 0

)
.

The matrix field U ∈ C 1(Ω0;S
2
>) being defined as above, define the matrix fields

Ũ :=
(

U
0 0

0
0
1

)
∈ C 1(Ω0;S

3
>

)
and (gij ) := Ũ2 ∈ C 1(Ω0;S

3
>

)
.

Then gαβ = aαβ − 2x3bαβ + x2
3aστ bασ bβτ and gi3 = δi3, where (aστ ) := (aαβ)−1.

(iii) The matrix field Ũ ∈ C 1(Ω0;S
3
>) being defined as in (ii), define the matrix field

� := 1

det Ũ
Ũ

{
(CURL Ũ)T Ũ − 1

2

(
tr
[
(CURL Ũ)T Ũ

])
I
}

∈ C 0(Ω0;M
3).

Then the field � is also given by

� =
(

JT QT A−1/2B
Λ31 Λ32

0
0

∂3ϕ

)
,

where the function ϕ is defined as in (ii), and

(Λ31; Λ32) := (∂1u12 − ∂2u11; ∂1u22 − ∂2u21)JT U−1J ∈ C 0(Ω0;M
1×2), with (uαβ) := U.

(iv) The row vector field (Λ31;Λ32) ∈ C 0(Ω0;M
1×2) as defined in (iii) is also given by (Λ31; Λ32) = (λ31; λ32)+

(∂1ϕ; ∂2ϕ), where (λ31; λ32) := (∂2u
0
11 − ∂1u

0
12; ∂2u

0
21 − ∂1u

0
22)JA−1/2J and (u0

αβ) := A1/2.
The compatibility relation (7) (which has not yet been used so far) plays an indispensable role here.
(v) By parts (iii) and (iv), the matrix field � ∈ C 0(Ω0;M

3) defined in (iii) is of the form

� = (Λij ) =
(

JT QT A−1/2B
Λ31 Λ32

0
0

Λ33

)
=

⎛⎝ �1

∣∣∣∣∣∣ �2

∣∣∣∣∣∣ �3

⎞⎠ , with �3 :=
⎛⎝ 0

0
∂3ϕ

⎞⎠ ,

where the row-vector field (Λ31;Λ32) ∈ C 0(Ω0;M
1×2) is defined in (iv). Then

COF� =

⎛⎜⎜⎜⎝ −(∂3ϕ)QT A−1/2BJ

0 0

∣∣∣∣∣∣∣∣∣
�1 ∧ �2

⎞⎟⎟⎟⎠ ∈ C 0(Ω0;M
3),
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and

CURL� =

⎛⎜⎜⎜⎝ −∂3(JT QT A−1/2BJ)

0 0

∣∣∣∣∣∣∣∣∣
∂1�2 − ∂2�1

⎞⎟⎟⎟⎠ ∈ D′(Ω0;M
3).

(vi) Let the matrix fields COF� ∈ C 0(Ω0;M
3) and CURL� ∈ D′(Ω0;M

3) be given as in (v). Then

CURL� + COF� = 0 in D′(Ω0;M
3).

Like in part (iv), the compatibility relation (7) plays an indispensable role here.
(vii) Let ω be a simply-connected open subset of R

2. Then there exist open subsets ωn,n � 0,of R
2 such that ωn

is a compact subset of ω for each n � 0 and ω = ⋃
n�0ωn. Furthermore, for each n � 0, there exists εn = εn(ωn) > 0

such that the conclusions of part (i) hold with the set Ω0 replaced by Ωn, where Ωn := ωn×]–εn, εn[. Finally, the
open set Ω := ⋃

n�0 Ωn is connected and simply-connected.

(viii) Let the matrix field U ∈ C 1(Ω;S
2
>) be defined by

U(y, x3) := (
A(y) − 2x3B(y) + x2

3B−1(y)A(y)B(y)
)1/2 ∈ S

2
> for(y, x3) ∈ Ωn, n � 0,

and let the matrix field � ∈ C 0(Ω;M
3) be defined in terms of the matrix field Ũ ∈ C 1(Ω;S

3
>) (see part (ii)) by Eq. (4).

Then

CURL� + COF� = 0 in D′(Ω;M
3).

(ix) Given any two linearly independent vectors a0
α ∈ R

3 that satisfy a0
α · a0

β = aαβ(y0), define the matrix

F0 :=

⎛⎜⎜⎝ a0
1

∣∣∣∣∣∣ a0
2

∣∣∣∣∣∣ a0
1 ∧ a0

2

|a0
1 ∧ a0

2|

⎞⎟⎟⎠ , which satisfies FT
0 F0 =

(
A(y0)

0 0

0
0
1

)
= Ũ2(y0,0).

Since the compatibility relation (3) is satisfied, Theorem 1 shows that there exists a unique immersion � ∈
C 2(Ω;R

3) that satisfies ∇�T ∇� = U2 in C 1(Ω;S
3
>), and �(y0,0) = a0 and ∇�(y0,0) = F0.

Let the mapping θ ∈ C 2(ω;R
3) be defined by θ(y) := �(y,0) for all y ∈ ω. Then θ is an immersion and it satisfies

∂αθ · ∂βθ = aαβ in C 1(ω), ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | = bαβ in C 0(ω),

and

θ(y0) = a0 and ∂αθ(y0) = a0
α. �

Thanks to deep global existence theorems for Pfaff systems with little regularity recently obtained by S. Mar-
dare [5], the existence result of Theorem 2 can be extended to cover the situation where the given fields (aαβ) and (bαβ)

are only in the space W
1,∞
loc (ω;S

2
>) and W

1,∞
loc (ω;S

2), in which case the resulting immersion θ is found in the space

W
2,∞
loc (ω;R

3).
By contrast with the Gauss and Codazzi–Mainardi relations (whose necessity is easy to establish from the knowl-

edge of an immersion), establishing the necessity of the Darboux–Vallée–Fortuné relation ∂2λ1 − ∂1λ2 = λ1 ∧ λ2
through a direct computation turns out to be substantially less easy, however. See Theorem 5.1 in [2].

Acknowledgement

The work described in this paper was substantially supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. 9040966, CityU 100604].



1202 P.G. Ciarlet, O. Iosifescu / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 1197–1202
References

[1] P.G. Ciarlet, L. Gratie, O. Iosifescu, C. Mardare, C. Vallée, Another approach to the fundamental theorem of Riemannian geometry in R
3, by

way of rotation fields, J. Math. Pures Appl. 87 (2007) 237–252.
[2] P.G. Ciarlet, O. Iosifescu, A new approach to the fundamental theorem of surface theory, by means of the Darboux–Vallée–Fortuné compati-

bility relation, J. Mach. Pures Appl., in press.
[3] G. Darboux, Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal, vols. 1–4, Gauthier-Villars,

Paris, 1894–1915 (re-published in 2000 by the American Mathematical Society, Providence, RI).
[4] C. Mardare, On the recovery of a manifold with prescribed metric tensor, Anal. Appl. 1 (2003) 433–453.
[5] S. Mardare, On Pfaff systems with Lp coefficients and their applications in differential geometry, J. Math. Pures Appl. 84 (2005) 1659–1692.
[6] W. Pietraszkiewicz, M.L. Szwabowicz, Determination of the midsurface of a deformed shell from prescribed fields of surface strains and

bendings, Internat. J. Solids Structures 44 (2007) 6163–6172.
[7] W. Pietraszkiewicz, M.L. Szwabowicz, C. Vallée, Determination of the midsurface of a deformed shell from prescribed surface strains and

bendings via the polar decomposition, Internat. J. Non-Linear Mech. (2008), in press.
[8] W. Pietraszkiewicz, C. Vallée, A method of shell theory in determination of the surface from components of its two fundamental forms,

Z. Angew. Math. Mech. 87 (2007) 603–615.
[9] R.T. Shield, The rotation associated with large strains, SIAM J. Appl. Math. 25 (1973) 483–491.

[10] C. Vallée, Compatibility equations for large deformations, Internat. J. Engrg. Sci 30 (1992) 1753–1757.
[11] C. Vallée, D. Fortuné, Compatibility equations in shell theory, Internat. J. Engrg. Sci. 34 (1996) 495–499.


	Justification of the Darboux-Vallée-Fortuné compatibility relation in the theory of surfaces
	Introduction
	Notations
	A new formulation of the fundamental theorem of Riemannian geometry in R3
	A new formulation of the fundamental theorem of surface theory
	Acknowledgement
	References


