The boundary of bounded polynomial Fatou components

Pascale Roesch ${ }^{\text {a }}$, Yongcheng Yin ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire Émile-Picard, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 9, France
${ }^{\text {b }}$ School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Received 24 December 2007; accepted after revision 11 June 2008
Available online 7 July 2008
Presented by Étienne Ghys

Abstract

We prove that, for a polynomial, every bounded Fatou component, with the exception of Siegel disks, has for boundary a Jordan curve. To cite this article: P. Roesch, Y. Yin, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Frontière des composantes de Fatou polynômiales. Nous montrons que le bord de toute composante de Fatou bornée d' un polynôme, hormis les disques de Siegel, est une courbe de Jordan. Pour citer cet article : P. Roesch, Y. Yin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Theorem 1. Let B be a bounded Fatou component of a polynomial f that is not eventually a Siegel disk, then ∂B is a Jordan curve.

By hypothesis, B is the connected component of the immediate basin of attraction of an (eventually) attracting or parabolic periodic point. For simplicity of the exposition, we assume that the Julia set is connected and we write the proof in the attracting case, but the arguments are the one of the parabolic (and attracting) case. We fix a point x on ∂B and construct a basis of connected neighborhoods as follows. Let Γ be a graph formed by an internal and an external equipotential, a cycle of internal rays generated by some $R_{B}(\xi)$ (where ξ is periodic such that $\bigcup_{n} f^{n}(x) \cap \overline{R_{B}(\xi)}=\emptyset$) together with the external rays landing at their terminal points on ∂B. We denote by $P_{n}(*)$, the puzzle pieces, which are the connected components of $\mathbb{C} \backslash f^{-n}(\Gamma)$. In the parabolic case internal rays (resp. equipotentials) are parabolic rays (resp. parabolic equipotentials) see [4] or [6]. The puzzle piece containing $x, P_{n}(x)$, is well defined and $\overline{P_{n}(x)} \cap \partial B$ is a connected set since it is the intersection of the compact connected sets consisting in $\bar{\phi}\left(\Delta_{n}\right)$ where $\phi: \mathbf{D} \rightarrow B$ is the Riemann map and $\Delta_{n}=\left\{r e^{i t} \mid r \in\left[1-1 / n\left[, t \in\left[t_{1}, t_{2}\right]\right\}\right.\right.$ some sector. Thus, let $\operatorname{Imp}(x)$ be the intersection $\bigcap_{n} \overline{P_{n}(x)}$. If $\operatorname{Imp}(x) \cap \partial B=\{x\}$, the sequence $\left(P_{n}(x)\right)$ forms the investigated basis. Note that it does not depend on the graph. Then Theorem 1 follows since by Carathérodory's Theorem if ∂B is locally connected, it is a curve and it is simple by the maximum principle.

[^0]Proposition 2. If x is eventually periodic, either $\operatorname{Imp}(x)=\{x\}$ or two external rays converge to x separating $\operatorname{Imp}(x) \backslash\{x\}$ from B so that $\operatorname{Imp}(x) \cap \partial B=\{x\}$.

Denote by Crit the set of critical points of f. We assume that for any $z, P_{0}(z) \cap C r i t \subset \operatorname{Imp}(z)$ (up to starting the puzzle at a deeper level).

Proof. The proof uses an argumentation similar to the one of Kiwi (see [2]). We assume (up to replacing f by an iterate) that x is a fixed point and we suppose that $\operatorname{Imp}(x) \neq\{x\}$. The accessible fixed points in $\operatorname{Imp}(x)$ give us fixed points of a map of \mathbb{S}^{1} as follows: Since $\operatorname{Imp}(x)$ is a compact connected set (as intersection of such sets), we can consider a Riemann map $\phi: \overline{\mathbb{C}} \backslash \operatorname{Imp}(x) \rightarrow \overline{\mathbb{C}} \backslash \overline{\mathbb{D}}$. The map $g=\phi \circ f \circ \phi^{-1}$ is well defined on $\phi\left(P_{0}(x) \backslash \operatorname{Imp}(x)\right)$ since $\left(P_{0}(x) \backslash \operatorname{Imp}(x)\right) \cap$ Crit $=\emptyset$ so that there is no pre-image of $\operatorname{Imp}(x)$ in $P_{0}(x)$ other than $\operatorname{Imp}(x)$. First of all, if $\operatorname{Imp}(x) \cap \partial P_{0}(x) \neq \emptyset$ (this happens only in the parabolic case), we consider U_{0} a small enlargement of $P_{0}(x)$ at those points still satisfying the previous properties; then let $V_{0}=\phi\left(U_{0} \backslash \operatorname{Imp}(x)\right), U_{1}=f^{-1}\left(U_{0} \backslash \operatorname{Imp}(x)\right)$ and $V_{1}=\phi\left(U_{1}\right)$. By Schwarz reflection principle on V_{1} and V_{0}, we get \tilde{V}_{1} and \tilde{V}_{0} neighborhoods of \mathbb{S}^{1} and a map $\tilde{g}: \tilde{V}_{1} \rightarrow \tilde{V}_{0}$ such that $\tilde{g}_{\left.\right|_{V_{1}}}=g$. Since \tilde{g} is a holomorphic covering that preserves \mathbb{S}^{1} and each side, it has no critical point on \mathbb{S}^{1}.

We now consider particular fixed points coming from rays in $P_{n}(x)$ as follows. In $\partial P_{n}(x) \cap B$, there are portions of two internal rays $R_{B}\left(t_{n}\right), R_{B}\left(t_{n}^{\prime}\right)$ and portions of two external rays $R\left(\eta_{n}\right), R\left(\eta_{n}^{\prime}\right)$ landing at the previous landing points. The angles t_{n}, t_{n}^{\prime}, respectively $\eta_{n}, \eta_{n}^{\prime}$, converge to some t, respectively to η, η^{\prime}, since the puzzle pieces are nested. Moreover, $R_{B}(t), R(\eta), R\left(\eta^{\prime}\right)$ are fixed rays, since $f\left(P_{n}(x)\right)=P_{n-1}(x)$. Let y be the landing point of $R_{B}(t)$ and z, z^{\prime} of $R(\eta), R\left(\eta^{\prime}\right)$. Since y is either repelling or parabolic, it is the landing point of an external ray, say $R(\theta)$, which is fixed since $R_{B}(t)$ is a fixed internal ray. The curve $\phi(R(\theta))$ converges to some point in \mathbb{S}^{1} and we chose ϕ such that this point is 1 . We suppose to get a contradiction that $y \neq z$ (the same argument holds for $y \neq z^{\prime}$). Then the limit of $\phi(R(\eta))$ and 1 are two fixed points of \tilde{g}. It is not very difficult to see that the fixed points of \tilde{g} are all weakly repelling, that is $|\tilde{g}(x)-p|_{\mathbb{S}^{1}}>|x-p|_{\mathbb{S}^{1}}$ for a fixed point p (see [2,6]). Then, it is easy to see on a lift of \tilde{g} that between two fixed points of \tilde{g} there is a preimage by \tilde{g} of 1 . Thus, each connected component of $V_{1} \backslash(\phi(R(\theta)) \cup \phi(R(\eta)))$ contains a preimage of $\phi(R(\theta))$. The same holds for the open set $U_{1} \backslash \operatorname{Imp}(x)$: it is cut in two components by $R(\theta)$ and $R(\eta)$ and each one contains a preimage of $R(\theta)$. Hence there are $R\left(\theta^{\prime}\right), R\left(\theta^{\prime \prime}\right)$ preimages of $R(\theta)$ such that $\theta<\theta^{\prime}<\eta<\theta^{\prime \prime}<\theta+2 \pi$. Since $R\left(\theta^{\prime}\right), R\left(\theta^{\prime \prime}\right)$ land on $\operatorname{Imp}(x)$ these rays enter every puzzle piece $P_{n}(x)$ so that at least one of the angle $\theta^{\prime}, \theta^{\prime \prime}$ belongs to the intervals $\left(\eta_{n}, \eta\right)$, $\left(\eta_{n}^{\prime}, \eta^{\prime}\right)$ whose diameters tend to 0 . This gives the contradiction since it would implies that θ^{\prime} or $\theta^{\prime \prime}$ equal η or η^{\prime}. Then $y=z=z^{\prime}$ so that $R(\eta)$ and $R\left(\eta^{\prime}\right)$ land at the same point.

Let W_{0} be the union of the connected components of $P_{0}(x) \backslash\left(R(\eta) \cup R\left(\eta^{\prime}\right) \cup\{z\}\right)$ intersecting B. Assume to get a contradiction that $\operatorname{Imp}(x) \cap W_{0}=I \neq \emptyset$. The set I contains more than one point. Either there is a critical point in I so that there is a preimage of y in I with a preimage $R(\zeta)$ of $R(\theta)$ landing at it or the map $f: W_{1} \rightarrow W_{0}$ is an homeomorphism where W_{1} is the connected component of $P_{1}(x) \backslash\left(\bar{R}(\eta) \cup \bar{R}\left(\eta^{\prime}\right)\right)$ intersecting B and $W_{1} \subset W_{0}$. In the first case the angle ζ belongs to one of the intervals $\left(\eta_{n}, \eta\right) \cup\left(\eta_{n}^{\prime}, \eta^{\prime}\right)$ whose diameters tend to 0 , thus $\zeta=\eta$ which gives the contradiction. In the second case, $f_{0}^{-1}: W_{0} \rightarrow W_{1}$ is a conformal map. By Denjoy-Wolff's Theorem, the iterates by f_{0}^{-1} of every point of W_{0} converge to a unique point in \bar{W}_{0}, but this is not possible since $I \subset\left(f_{0}^{-1}\right)^{n}\left(W_{0}\right)$ for all $n>0$. Hence the two rays $R(\eta), R\left(\eta^{\prime}\right)$ separate \bar{B} from $\operatorname{Imp}(x) \backslash\{x\}$. Finally, the sets $\bar{P}_{n}(x) \cap \partial B$ form a basis of connected neighborhoods of x in ∂B.

Lemma 3. If x is not eventually periodic but the ω-limit set of x contains an eventually periodic point y, then $\operatorname{Imp}(x) \cap \partial B=\{x\}$.

Note that any point of $\omega(x)$ is accumulated by x in the following sense:
Definition 4. We say that z_{1} accumulates z_{2} if for every n there exists k such that $f^{k}\left(z_{1}\right) \in P_{n}\left(z_{2}\right)$.
Denote by b, resp. dmax, the number of critical impressions, resp. the maximal degree of f on those sets. To prove Lemma 3 we will use the following lemma:

Lemma 5. For $k \geqslant 0$ and for the smallest integer such that $f^{t}(x) \in P_{k}(c)$ for some c, the degree of $f^{t}: P_{k+t}(x) \rightarrow$ $P_{k}(c)$ is bounded by dmax ${ }^{b}$.

Proof of Lemma 5. Every critical point appears at most once in the sequence $f^{i}\left(P_{k+t}(x)\right)$ for $0 \leqslant i \leqslant t$, otherwise c would appear in some puzzle piece $P_{k}\left(f^{j}(x)\right)$ for $j<t$. The result follows.

Proof of Lemma 3. We assume (up to iterate f) that y is fixed. It is on ∂B and by Proposition $2 \operatorname{Imp}(y) \cap \partial B=$ $\{y\}$. Here we choose a graph for y, that will be also good for x. Hence, for every $n \in \mathbb{N}$ there exists a smallest k_{n} such that $f^{k_{n}}(x) \in P_{n}(y)$ and a smallest $m_{n} \geqslant n$ such that $f^{k_{n}}(x) \notin P_{m_{n}}(y)$. Hence $y \in P_{m_{n}-1-i}\left(f^{k_{n}+i}(x)\right) \backslash$ $P_{m_{n}-i}\left(f^{k_{n}+i}(x)\right)$ for every $i \leqslant m_{n}-1$. So the map $f^{m_{n}}: P_{m_{n}}\left(f^{k_{n}}(x)\right) \rightarrow P_{0}\left(f^{m_{n}+k_{n}}(x)\right)$ is an homeomorphism, since $P_{0}(y) \cap C r i t \subset \operatorname{Imp}(y)$. The annulus $A=P_{0}(y) \backslash \bar{P}_{1}(y)$ is non degenerate for any graph that do not contain the internal fixed ray converging to y. So let $k_{n}^{\prime} \geqslant m_{n}+k_{n}+1$ be the smallest such that $f^{k_{n}^{\prime}}(x) \in P_{1}(y)$. Then the modulus of $P_{k_{n}^{\prime}}(x) \backslash \bar{P}_{k_{n}^{\prime}+1}(x)$ is bigger than or equal to $\bmod (A) / d \max ^{2 b}$. Indeed, the map $f^{m_{n}+k_{n}}: P_{m_{n}+k_{n}}(x) \rightarrow P_{0}\left(f^{m_{n}+k_{n}}(x)\right)$ has degree less than or equal to $d m a x^{b}$ since k_{n} is the first integer such that $f^{k_{n}}(x) \in P_{n}(y)$, and the degree of $f^{k_{n}^{\prime}-\left(m_{n}+k_{n}\right)}: P_{k_{n}^{\prime}-\left(m_{n}+k_{n}\right)}\left(f^{m_{n}+k_{n}}(x)\right) \rightarrow P_{0}\left(f^{k_{n}^{\prime}}(x)\right)$ is less or equal than dmax ${ }^{b}$. Now, choose $n_{1} \geqslant k_{n}^{\prime}$ and repeat the argument again, and so on. One gets a sequence of annuli $P_{k_{n_{i}}^{\prime}}(x) \backslash \bar{P}_{k_{n_{i}}^{\prime}+1}(x)$ of modulus bounded below by $\bmod (A) / d m a x^{2 b}$. Therefore $\operatorname{Imp}(x)=\{x\}$.

Definition 6. Denote by $\operatorname{Crit}(z)$ the set of critical points accumulated by a point z. Let Crit $_{a}$ be the set of critical points accumulating themselves and Crit $_{n r}$ the ones not accumulating points of Crit. They are disjoint sets and every critical point belongs to or accumulates on Crit $_{a} \cup$ Critt $_{n r}$ (since the property of accumulation is transitive). So we concentrate on Crit $_{a}$ that we decompose in Crit $_{r r} \cup$ Crit $_{p r}$ as follows. A piece $P_{n+k}\left(c^{\prime}\right)$ is a child of $P_{n}(c)$ if $c, c^{\prime} \in$ Crit, c accumulates c^{\prime} and $f^{k-1}: P_{n+k-1}\left(f\left(c^{\prime}\right)\right) \rightarrow P_{n}(c)$ is conformal. Then c is said persistently recurrent, i.e. in Crit ${ }_{p r}$, if for every $c^{\prime} \in \operatorname{Crit}(c)$ accumulating $c, P_{n}\left(c^{\prime}\right)$ has a finite number of children for every $n \geqslant 0$. Else c is said reluctantly recurrent, in Critrr .

In the following we consider only points that do not contain eventually periodic points in their ω-limit set:
Proposition 7. If Crit $(x)=\emptyset$ or if $\operatorname{Crit}(x) \cap\left(\right.$ Crit $_{n r} \cup$ Crit $\left._{r r}\right) \neq \emptyset$, then $\operatorname{Imp}(x)=\{x\}$.
Lemma 8. For any puzzle piece $P_{n_{0}}$ and any sequence (n_{k}), such that $f^{n_{k}}(x) \in P_{n_{0}}$, there exists some $r \geqslant 1$ and a subsequence $\left(n_{k_{i}}\right)$ of $\left(n_{k}\right)$ such that $f^{n_{k_{i}}}(x) \in P_{n_{0}+r}$ and $\bar{P}_{n_{0}+r} \subset P_{n_{0}}$.

Proof. In this proof, we consider only puzzle pieces containing infinitely many points of the sequence $f^{n_{k}}(x)$. Either there is a puzzle piece $P_{n_{0}+r}$ compactly contained in $P_{n_{0}}$ for some $r \geqslant 1$ or, for every decreasing sequence $P_{n_{0}+r}$, $\partial P_{n_{0}+r}$ intersects $\partial P_{n_{0}} \cap \partial B$ at one point $=\{z\}$ for every $r \geqslant 1$. The point z is eventually repelling since $\partial P_{n_{0}}$ and $\partial P_{n_{0}+1}$ can only intersect at the landing points of rays. Therefore, $\operatorname{Imp}(z) \cap \partial B=\{z\}$ (by Proposition 2) so that $z \in \omega(x)$ since $x \in \partial B$. This contradicts the hypothesis that there is no eventually periodic point in $\omega(x)$.

Corollary 9. If $P_{n_{0}}$ and $\left(n_{k}\right)$ satisfy that $f^{n_{k}}: P_{n_{k}+n_{0}}(x) \rightarrow P_{n_{0}}$ has bounded degree, then $\operatorname{Imp}(x)=\{x\}$.
Proof. By Lemma 8, for this puzzle piece $P_{n_{0}}$ and this sequence $\left(n_{k}\right)$, we can find a puzzle piece $P_{n_{0}+r}$ such that $\bar{P}_{n_{0}+r} \subset P_{n_{0}}$ and $f^{n_{k_{i}}}(x) \in P_{n_{0}+r}$ for a subsequence $n_{k_{i}}$ of n_{k}. Then by classical results, the modulus $\bmod \left(P_{n_{0}+n_{k_{i}}}(x) \backslash \bar{P}_{n_{0}+r+n_{k_{i}}}(x)\right)$ is greater than $\bmod \left(P_{n_{0}} \backslash \bar{P}_{n_{0}+r}\right) / D$ where D is the bound on the degree. Therefore $\operatorname{Imp}(x)=\{x\}$.

Corollary 9 implies that we do not need to search non degenerate annuli in this special case.
Proof of Proposition 7. If $\operatorname{Crit}(x)=\emptyset$, there is a level n_{0} such that there is no critical points in $P_{n_{0}+j}\left(f^{i}(x)\right)$ for $i, j>0$. Then for every $k \geqslant 0$ the map $f^{k}: P_{n_{0}+k}(x) \rightarrow P_{n_{0}}\left(f^{k}(x)\right)$ is of degree at most dmax. Since there is only a finite number of puzzle pieces of depth n_{0}, there are a puzzle piece $P_{n_{0}}$ and a subsequence $\left\{k_{i}\right\}$ such that $P_{n_{0}}\left(f^{k_{i}}(x)\right)=P_{n_{0}}$. The result follows from Corollary 9 .

If $c \in \operatorname{Crit}(x) \cap \operatorname{Crit}_{n r}$, there is a level n_{0} such that for every $k \geqslant 0$ the map $f^{k}: P_{n_{0}+k}(c) \rightarrow P_{n_{0}}\left(f^{k}(c)\right)$ is of degree at most dmax. Let t_{k} be the smallest integer such that $f^{t_{k}}(x) \in P_{n_{0}+k}(c)$. By Lemma 5 the degree of $f^{t_{k}}: P_{n_{0}+k+t_{k}}(x) \rightarrow P_{n_{0}+k}(c)$ is bounded by $d m a x{ }^{b}$. There exists at least one piece $P_{n_{0}}$ such that $P_{n_{0}}=P_{n_{0}}\left(f^{k}(c)\right)$ for infinitely many values of $k \geqslant 0$. Therefore the assumptions of Corollary 9 are satisfied and the result follows.

If x accumulates $c \in$ Crit $_{r r}$, there exists $c^{\prime}, c^{\prime \prime} \in$ Crit, a level n_{0} and a sequence $\left(k_{i}\right)$ such that the map $f^{k_{i}}: P_{n_{0}+k_{i}}\left(c^{\prime \prime}\right) \rightarrow P_{n_{0}}\left(c^{\prime}\right)$ is of degree at most dmax (there are infinitely many children of $\left.P_{n_{0}}\left(c^{\prime}\right)\right)$. For every $i \geqslant 0$ let t_{i} be the smallest integer such that $f^{t_{i}}(c) \in P_{n_{0}+k_{i}}\left(c^{\prime \prime}\right)$ and let l_{i} be the smallest integer such that $f^{l_{i}}(x) \in P_{n_{0}+k_{i}+l_{i}}(c)$, they exist since c accumulates $c^{\prime \prime}$ and x accumulates c. By Lemma 5 the degree of $f^{l_{i}+t_{i}+k_{i}}: P_{n_{0}+l_{i}+t_{i}+k_{i}}(x) \rightarrow$ $P_{n_{0}}\left(c^{\prime}\right)$ is bounded by $d m a x^{2 b+1}$. As above the result follows.

We assume now that $c_{0} \in \operatorname{Crit}(x) \subset$ Crit $_{p r}$. For any puzzle piece $P_{n_{0}}$ containing c_{0} Lemma 8 gives for some $r \geqslant 1$ a non degenerate annulus $P_{n_{0}} \backslash \bar{P}_{n_{0}+r}$. We construct from $P_{n_{0}+r}$ a nest $\left(K_{n}\right),\left(K_{n}^{\prime}\right)$ called KSS nest (see [3]) as follows. Define the first hit containing a point z to a puzzle piece I as $L_{z}(I)$ the connected component containing z of the points of I coming back in I for the first time. Thus, to any puzzle piece I containing c_{0}, we associate two puzzle pieces $A(I)$ and $B(I)$ satisfying the following properties: $\overline{A(I)} \subset B(I)$, for some t the map $f^{t}: B(I) \rightarrow I$ has degree less than $d m a x x^{b^{2}}$, the orbit of critical points accumulated by c_{0} never meets $B(I) \backslash A(I)$ and $f^{t}(A(I))=L_{f^{t}\left(c_{0}\right)}(I)$. Then consider K_{0}, K_{0}^{\prime} defined by $K_{0}=B(A(I))$ with $f^{t_{0}}\left(K_{0}\right)=A(I)$ and K_{0}^{\prime} is the connected component containing c_{0} of $\left(f^{t_{0}}\right)^{-1}(B(I))$. Let us continue the induction by taking $I_{1}=\Gamma^{T}\left(K_{0}\right)$ where T is some constant and $\Gamma(J)$ is the last successor of J. The last successor of a puzzle piece J is a puzzle piece $\Gamma(J)$ such that $f^{j}(\Gamma(J))=J$ with the largest $j=l+m+o$ such that $f^{o}(\Gamma(J))=Q_{c^{\prime}}$ is a child of some P_{c} (exactly $\left.f^{m}\left(Q_{c^{\prime}}\right)=P_{c}\right)$ and $f^{l}\left(P_{c}\right)=J$. In particular we have the property that $f^{i}(\Gamma(J))$ does not contain c_{0} for all $0<i<j$. Iterating the process, we obtain a sequence I_{n} and then the KSS nest $\left(K_{n}\right),\left(K_{n}^{\prime}\right)$.

Lemma 10. Let $\left(K_{n}\right),\left(K_{n}^{\prime}\right)$ be the KSS nest constructed from $P_{n_{0}+r}$, then level $\left(K_{n}^{\prime}\right)-\operatorname{level}\left(K_{n}\right) \rightarrow \infty$.
Proof. Denote by $r(P)$ the minimal time of first return to P of points of P. By definition, level $\left(K_{n}^{\prime}\right)-\operatorname{level}\left(K_{n}\right)=$ level $\left(B\left(I_{n}\right)\right)-\operatorname{level}\left(A\left(I_{n}\right)\right) \geqslant r\left(I_{n}\right)$. Now, for J, j as above, as $f^{i}(\Gamma(J))$ does not contain c_{0} for all $0<i<j$, $r(\Gamma(J)) \geqslant q$ where $f^{q}(\Gamma(J))=J$. Since every piece has at least two successors, $r(\Gamma(J)) \geqslant 2 r(J)$. Therefore $r\left(I_{n+1}\right) \geqslant 2^{T} r\left(I_{n}\right)$ so that $r\left(I_{n}\right)$ tends to ∞ and so does level $\left(K_{n}^{\prime}\right)-\operatorname{level}\left(K_{n}\right)$.

Corollary 11. The set $K_{n}^{\prime} \backslash \bar{K}_{n}$ is a non degenerate annulus for large n.
Proof. For j_{n} such that $f^{j_{n}}\left(K_{n}\right)=P_{n_{0}+r}$, the annulus $K_{n}^{\prime} \backslash \bar{K}_{n}$ contains $P_{n_{0}+j_{n}} \backslash \bar{P}_{n_{0}+j_{n}+r}$ for large n (Lemma 10). So it is non degenerate since $f^{j_{n}}\left(P_{n_{0}+j_{n}}\right)=P_{n_{0}}$ and $f^{j_{n}}\left(P_{n_{0}+j_{n}+r}\right)=P_{n_{0}+r}$.

Proposition 12. If every c accumulated by $x \in \partial B$ belongs to Crit pr, then $\operatorname{Imp}(x)=\{x\}$.
Proof. Since the annuli $K_{n}^{\prime} \backslash \bar{K}_{n}$ are non degenerate, the same argument as in [5] allows us to conclude that there is some positive constant μ such that $\bmod \left(K_{n}^{\prime} \backslash \bar{K}_{n}\right) \geqslant \mu$ (this uses in particular Kahn-Lyubich's Lemma, see [1]). The pieces K_{n}, K_{n}^{\prime} are of the form $P_{k_{n}}\left(c_{0}\right), P_{k_{n}^{\prime}}\left(c_{0}\right)$. Since x accumulates c_{0}, let l_{n} be the smallest integer such that $f^{l_{n}}(x) \in K_{n}$. By Lemma 5, the degree of the map $f^{l_{n}}: P_{k_{n}+l_{n}}(x) \rightarrow P_{k_{n}}\left(c_{0}\right)$ is bounded by dmax ${ }^{b}$. Moreover, the orbit of any the critical point accumulated by c_{0} does never enter $K_{n}^{\prime} \backslash K_{n}$, by the construction of the KSS nest. Therefore the degree is bounded by the same constant D for the map $f^{l_{n}}: P_{k_{n}^{\prime}+l_{n}}(x) \rightarrow P_{k_{n}^{\prime}}\left(c_{0}\right)$ so that the modulus of the annulus $P_{k_{n}^{\prime}+l_{n}}(x) \backslash \bar{P}_{k_{n}+l_{n}}(x)$ is greater than μ / D which implies that $\operatorname{Imp}(x)=\{x\}$.

References

[1] J. Kahn, M. Lyubich, The quasi-additivity law in conformal geometry, Ann. of Math., in press.
[2] J. Kiwi, Real laminations and the topological dynamics of complex polynomials, Adv. Math. 184 (2004) 207-267.
[3] O. Kozlovski, W. Shen, S. van Strien, Rigidity for real polynomials, Ann. of Math. 165 (2007) 749-841.
[4] C.L. Petersen, P. Roesch, Parabotools, manuscript.
[5] W. Qiu, Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, preprint, arXiv: math.DS/0608045.
[6] P. Roesch, Cubic polynomials with a parabolic point, preprint, arXiv: math.DS/0712.3372.

[^0]: E-mail addresses: roesch@math.univ-toulouse.fr (P. Roesch), ycyin@fudan.edu.cn (Y. Yin).

 1631-073X/\$ - see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.06.004

