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Abstract

We give a lower bound for the length of a non-trivial geodesic loop on a simply-connected and compact manifold of even
dimension with a non-reversible Finsler metric of positive flag curvature. Harris and Paternain use this estimate in their recent paper
to give a geometric characterization of dynamically convex Finsler metrics on the 2-sphere. To cite this article: H.-B. Rademacher,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La longueur d’un lacet géodésique. On donne une borne inférieure pour la longueur d’un lacet géodésique non-triviale sur une
variété compacte et simplement connexe munie d’une métrique de Finsler non-reversible de courbure positive. Harris et Paternain
utilisent cette éstimée dans leur récent article afin de donner und charactérisation géométrique des métriques de Finsler à convexité
dynamique sur la sphère de dimension 2. Pour citer cet article : H.-B. Rademacher, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

On a compact and simply-connected Riemannian manifold with positive sectional curvature 0 < K � 1 the length
of a non-constant geodesic loop is bounded from below by 2π . This result is due to Klingenberg [3] and is of impor-
tance in proofs of the classical sphere theorem.

For a compact manifold M with non-reversible Finsler metric F the author introduced in [5] the reversibility
λ := max{F(−X);F(X) = 1} � 1. In this short Note we show how one can use the results and methods from [5] to
obtain the following estimate for the length of a geodesic loop depending on the flag curvature and the reversibility:

Proposition 1. Let M be a compact and simply-connected differentiable manifold of even dimension n � 2 equipped
with a non-reversible Finsler metric F and flag curvature K satisfying 0 < K � 1. Then the length l of a shortest non-
constant geodesic loop is bounded from below: l � π(1 + λ−1). In addition the injectivity radius satisfies: inj � π/λ.

In [5, Theorem 4] it is shown that with the same assumptions the length of a closed geodesic c satisfies this estimate.
Therefore, Proposition 1 follows from Proposition 3 which we are going to prove in this Note. Proposition 1 answers
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a question posed to the author by G. Paternain. Using results by Hofer, Wysocki and Zehnder [2] and the statement
of Proposition 1 Harris and Paternain obtain the following geometric characterization of dynamically convex Finsler
metrics on the 2-sphere:

Proposition 2. (Harris–Paternain [1, Section 6].) Let F be a non-reversible Finsler metric on the 2-sphere with
reversibility λ and flag curvature

(
1 − 1

1 + λ

)2

< K � 1.

Then the Finsler metric is dynamically convex, in particular there are either two geometrically distinct closed
geodesics or there are infinitely many geometrically distinct ones.

For existence results for closed geodesic of Finsler metrics on the 2-sphere we refer to the recent survey [4] by Long
and to [7]. On the n-sphere Sn there is a 1-parameter family Fε, ε ∈ [0,1) of Finsler metrics (called Katok metrics)
with the following properties: F0 is the standard Riemannian metric, for every ε ∈ (0,1) the metric is a non-reversible
Finsler metric of constant flag curvature 1, the reversibility is λ = (1 + ε)/(1 − ε) and the shortest geodesic loop is
a closed geodesic of length π(1 + λ−1). This shows that the estimate given in Proposition 1 is sharp. In addition the
number of closed geodesics for n = 2 is two if ε is irrational. It is an open problem whether there is a non-reversible
Finsler metric on S2 with a finite number N > 2 of geometrically distinct closed geodesics.

We use the following notations on a compact manifold M with Finsler metric F introduced in [5]: For points
p,q ∈ M let θ(p, q) be the minimal length of a piecewise differentiable curve c : [0,1] → M joining p = c(0) and
q = c(1). For a non-reversible Finsler metric we have in general θ(p, q) �= θ(q,p), i.e. θ defines in general a non-
symmetric metric on M . Therefore θ(p, q) equals the length of a minimal geodesic c : [0,1] → M joining p = c(0)

and q = c(1), i.e. a geodesic with L(c) = θ(c(0), c(1)). Then d :M × M → R;d(p,q) = (θ(p, q) + θ(q,p))/2
defines a symmetric metric on M . For a point p ∈ M and a unit vector v ∈ TpM;F(v) = 1 let cv : R → M be the
geodesic with p = c(0);v = c′(0) and define tv := sup{t > 0; θ(c(0), c(t)) = t}. Then cv(tv) is a cut point of the point
p and the cut locus Cut(p) of the point p is given by Cut(p) = {cv(tv);v ∈ TpM,F(v) = 1}.

We consider the following invariants and their relations: The symmetrized injectivity radius d := inf{d(p,q);q ∈
Cut(p)}, the length L of a shortest (nontrivial) closed geodesic and the length l of a shortest (nontrivial) geodesic
loop.

Lemma 1. Let (M,F) be a compact Finsler manifold, then the symmetrized injectivity radius d and the length l resp.
L of a shortest non-trivial geodesic loop resp. closed geodesic satisfy: 2d � l � L.

Proof. Let c : [0, l] → M be a shortest geodesic loop parametrized by arc length with p = c(0) = c(l). Let q =
c(t), t ∈ (0, l) be the cut point, i.e. c|[0, t] is minimal. It follows that l = L(c) � θ(p, q) + θ(q,p) = 2d(p,q) � 2d .
The inequality L � l is obvious. �

The next ingredient in the proof of Proposition 3 is the following result:

Lemma 2. (See [5, Lemma7].) Let (M,F) be a compact Finsler manifold with reversibility λ, symmetrized injectivity
radius d and flag curvature K � 1. If 2d < π(1 + λ−1) then the length l of a shortest non-trivial geodesic loop
satisfies: l = 2d .

With the help of these two lemmata we prove the following:

Proposition 3. Let (M,F) be a compact manifold with Finsler metric F with reversibility λ and flag curvature K � 1.
If the symmetrized injectivity radius d satisfies 2d < π(1+λ−1) then every shortest geodesic loop is a closed geodesic,
hence L = l = 2d .
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Proof. Let c : [0, l] → M be a shortest geodesic loop parametrized by arc length with c(0) = c(l) = p. Let q =
c(t), t ∈ (0, l) be the cut point, i.e. c|[0, t] is minimal. We assume that l < π(1 + λ−1). By Lemma 1 we obtain
2d < π(1 + λ−1). Then we conclude from Lemma 2 that l = L(c) = 2d . Since

2d = l = L(c) � θ(p, q) + θ(q,p) = 2d(p,q) (1)

and q ∈ Cut(p) it follows from the definition of the symmetrized injectivity radius d that equality holds in inequal-
ity (1). Therefore c|[t, l] is a minimal geodesic joining q and p.

For sufficiently small ε > 0 with pε = c(ε) there is tε ∈ (t,1) such that qε = c(tε) ∈ Cut(pε), i.e. the geodesic
c|[ε, tε] is minimal. We conclude from the triangle inequality:

2d(pε, qε) = θ(pε, qε) + θ(qε,pε) � θ(pε, qε) + θ(qε,p) + θ(p,pε)

= θ(p, q) + θ(q,p) = L(c) = 2d(p,q).

From the definition of the symmetrized injectivity radius d it follows that actually equality holds, i.e. the geodesic
loop is a closed geodesic. �
Proof of Proposition 1. We assume that l < π(1 + λ−1) and conclude from Lemmas 1 and 2: 2d = l < π(1 +
λ−1). Then Proposition 3 implies that L = l = 2d < π(1 + λ−1). But in [5, Theorem 4] it is shown that under the
assumptions of Proposition 1 the length L of a shortest closed geodesic satisfies: L � π(1+λ−1). Therefore we obtain
a contradiction, i.e. l � π(1 + λ−1). �
Remark 1. Under the assumptions of Proposition 3 we have shown that for any point p ∈ M with a cut point q ∈ M

satisfying d(p,q) = d there is a shortest closed geodesic c : [0,2d] → M parametrized by arc length passing through
p and q , i.e. p = c(0) = c(2d); q = c(t); t ∈ (0,2d). Hence the restrictions c1 = c|[0, t] and c3 = c|[t,2d] are
minimal geodesics. The cut point q = c(t) is not a conjugate point since t = θ(p, q) < π and K � 1. This implies
that there is another minimal geodesic c2 : [0, t] → M joining p and q . Therefore Proposition 3 excludes the second
case discussed in [5, Remark 1] resp. [6, Lemma 9.7(b)].

References

[1] A. Harris, G. Paternain, Dynamically convex Finsler metrics and J -holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom.,
in press, doi:10.1007/s10455-008-9111-2.

[2] H. Hofer, K. Wysocki, E. Zehnder, The dynamics of three-dimensional strictly convex energy surfaces, Ann. Math. (2) 148 (1998) 197–289.
[3] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. Math. (2) 69 (1959) 654–666.
[4] Y. Long, Multiplicity and stability of closed geodesics on Finsler 2-spheres, J. Eur. Math. Soc. 8 (2006) 341–353.
[5] H.B. Rademacher, A Sphere Theorem for non-reversible Finsler metrics, Math. Ann. 328 (2004) 373–387.
[6] H.B. Rademacher, Non-reversible Finsler metrics of positive curvature, in: D. Bao, R. Bryant, S.S. Chern, Z. Shen (Eds.), A Sampler of

Riemann–Finsler Geometry, in: MSRI Series, vol. 50, Cambridge Univ. Press, 2004, pp. 261–302.
[7] H.B. Rademacher, Existence of closed geodesics on positively curved Finsler manifolds, Ergod. Theory Dynam. Systems 27 (2007) 957–969.


