C. R. Acad. Sci. Paris, Ser. I 346 (2008) 757-762

Differential Geometry

Gagliardo-Nirenberg inequalities involving the gradient L^{2}-norm

Martial Agueh ${ }^{1}$
Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045 STN CSC, Victoria B.C., V8W 3P4, Canada

Received 11 July 2007; accepted 23 May 2008
Available online 24 June 2008
Presented by Thierry Aubin

Abstract

We present a method giving the sharp constants and optimal functions of all the Gagliardo-Nirenberg inequalities involving the L^{2}-norm of the gradient. We show that the optimal functions can be explicitly derived from a specific non-linear ordinary differential equation which appears to be linear for a subclass of the Gagliardo-Nirenberg inequalities or when the space dimension reduces to 1 . In these cases, we give the explicit expressions of the optimal functions, along with the sharp constants of the corresponding Gagliardo-Nirenberg inequalities. Our method extend to the L^{p}-Gagliardo-Nirenberg and L^{p}-Nash's inequalities, for all $p>1$. To cite this article: M. Agueh, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Inégalites de Gagliardo-Nirenberg optimales. Nous présentons une méthode donnant les constantes et fonctions optimales de toutes les inégalités de Gagliardo-Nirenberg dépendant de la norme L^{2} du gradient. Nous montrons que les fonctions optimales se calculent explicitement à partir d'une équation différentielle ordinaire nonlinéaire, qui devient linéaire pour une sous-classe de ces inégalités ou quand la dimension de l'espace est réduite a 1 . Dans ces cas, nous obtenons explicitement les fonctions et constantes optimales des inégalités de Gagliardo-Nirenberg correspondantes. Notre méthode se généralise aux inégalités de Gagliardo-Nirenberg et de Nash dependant de la norme L^{p} du gradient, pour tout $p>1$. Pour citer cet article: M. Agueh, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous nous intéressons aux constantes et fonctions optimales des inégalités de GagliardoNirenberg, [7,9], qui sont des inégalités de la forme

$$
\begin{equation*}
\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant K_{\mathrm{opt}}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{\theta}\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{1-\theta} \quad \forall u \in D^{1, q}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

où $K_{\text {opt }}>0, n>2$ et $1<q<p<2^{*}:=\frac{2 n}{n-2}$, ou $n=1,2$ et $1<q<p$, et $\theta=\frac{2 n(p-q)}{p[2 n-q(n-2)]}$. Ici, $D^{1, q}\left(\mathbb{R}^{n}\right):=$ $\left\{u \in L^{q}\left(\mathbb{R}^{n}\right): \nabla u \in L^{2}\left(\mathbb{R}^{n}\right)\right\}$. Récemment, ce probème a été étudié dans beaucoup d'articles $[8,6,5,3]$, et des progrès

[^0]significatifs ont été faits dans cette direction. Mais les résultats obtenus sont limités à une sous-classe de ces inégalités, notamment, celle où les fonctions optimales sont des puissances polynomiales ou rationelles. Quand $n \geqslant 2$, il s'agit présicément des cas $q=1+\frac{p}{2}$ et $q=2(p-1)$, où les constantes et fonctions optimales sont récemment obtenues par Del Pino et Dolbeault [6]. Ici, nous considérons l'inégalité (1) en général, même si les conditions $q=1+\frac{p}{2}$ et $q=2(p-1)$ ne sont pas satisfaites. En dimension $n=1$, nous avons entièrement résolu ce problème dans [1], et de plus, nous y avons établi le lien entre ces inégalités et la théorie de Transport de masse. Dans cet article, nous généralisons la méthode de [1] en dimensions supérieures, $n \geqslant 2$. Dans l'espoir de rendre notre exposé simple et claire, nous allons nous restreindre aux inégalités de Gagliardo-Nirenberg qui sont fonction de la norme L^{2} du gradient, c'est-à-dire (1), bien que notre méthode se généralise à toutes les inégalités de Gagliardo-Nirenberg qui dependent de la norme L^{r} du gradient, où $1<r<n$ (voir [2]).

1. Introduction

The present Note deals with the Gagliardo-Nirenberg inequalities, [7,9], which are geometric inequalities of the form (1), where $K_{\text {opt }}>0, n>2$ and $1<q<p<2^{*}:=\frac{2 n}{n-2}$, or $n=1,2$ and $1<q<p$, and $\theta=\frac{2 n(p-q)}{p[2 n-q(n-2)]}$. Here,

$$
D^{1, q}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{q}\left(\mathbb{R}^{n}\right): \nabla u \in L^{2}\left(\mathbb{R}^{n}\right)\right\},
$$

and we consider the L^{2}-norm of ∇u for simplicity, though in general, the Gagliardo-Nirenberg inequalities can be stated with the L^{r}-norm of ∇u, where $1<r<n$. The problem of finding the sharp constants and optimal functions of these inequalities has attracted many researchers in the past few years, [8,6,5,3]. Though significant progress was made on this subject, the results obtained so far are restricted to a special subclass of these inequalities, namely, those for which the optimal functions involve only power laws. When $n \geqslant 2$, this is precisely the cases $q=1+\frac{p}{2}$ and $q=2(p-1)$, where the sharp constants and optimal functions are recently obtained by Del-Pino and Dolbeault in [6]. Here, we address the issue of the sharp constants and optimal functions of the Gagliardo-Nirenberg inequality (1) in general, that is, even if the condition $q=1+\frac{p}{2}$ or $q=2(p-1)$ is not satisfied. In the 1 -dimensional setting, the sharp constants and optimal functions of inequality (1) are recently derived in general by the author in [1], and the link between the inequality and Mass transportation theory is discussed. The present paper extends to higher dimensions, $n \geqslant 2$, the ideas presented in [1]. For simplicity, we will restrict to the L^{2}-Gagliardo-Nirenberg inequalities, though our analysis does apply to all L^{r}-Gagliardo-Nirenberg inequalities for $1<r<n$, [2]. Here is a brief sketch of our method; for more details, we refer to [2]. Gagliardo-Nirenberg inequality (1), in its sharp form, follows directly from the variational problem

$$
\begin{equation*}
\inf \left\{E(u):=\frac{1}{2} \int_{\mathbb{R}^{n}}|\nabla u|^{2} \mathrm{~d} x+\frac{1}{q} \int_{\mathbb{R}^{n}}|u|^{q} \mathrm{~d} x: u \in D^{1, q}\left(\mathbb{R}^{n}\right),\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}=1\right\}, \tag{2}
\end{equation*}
$$

as soon as one can determine, explicitly, a minimizer to this problem, (see Theorem 2.1). Although the existence of a minimizer to problem (2) is not hard to show (see Theorem 3.1), computing explicitly a minimizer appears very difficult, as it involves solving the non-linear PDE

$$
\begin{equation*}
-\Delta u+u^{q-1}-\lambda u^{p-1}=0, \tag{3}
\end{equation*}
$$

where $\lambda>0$ denotes the Lagrange multiplier for the constraint $\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}=1$. This is where lies the main difficulty of the problem. By a rearrangement argument, it can be shown that solving PDE (3) is equivalent to finding the unique non-negative decreasing solution of the ODE

$$
\begin{equation*}
v^{\prime \prime}(r)+(n-1) \frac{v^{\prime}(r)}{r}-v^{q-1}(r)+v^{p-1}(r)=0, \tag{4}
\end{equation*}
$$

where v and u are related by $v(r)=\lambda^{\frac{1}{p-q}} u\left(\lambda^{\frac{q-2}{2(p-q)}} x\right), r=|x|$ (see Theorem 3.1). Then, there exits a - change of function $H:(0, v(0)) \rightarrow \mathbb{R}$, such that $H(v(r))=\frac{r^{2}}{2}$. This change of function is suggested by the link between certain Gagliardo-Nirenberg inequalities and Mass transportation theory (see details in [2]). Using this change of function in (4), we show that H satisfies the non-linear ODE

$$
\begin{equation*}
2\left(\frac{t^{q}}{q}-\frac{t^{p}}{p}\right) H^{\prime \prime}(t)+\left(t^{q-1}-t^{p-1}\right) H^{\prime}(t)-2(n-1) H^{\prime \prime}(t) \int_{0}^{t} \frac{\mathrm{~d} s}{H^{\prime}(s)}=n \tag{5}
\end{equation*}
$$

whose solution gives an explicit minimizer to (2) (see Theorem 3.2), and therefore determines the sharp constants and optimal functions of all the Gagliardo-Nirenberg inequalities (1). We observe that if $n=1$, or if we assume that $H^{\prime \prime}(t) \int_{0}^{t} \frac{d s}{H^{\prime}(s)}$ is constant when $n \geqslant 2$, then (5) reduces to a first order linear ODE in H^{\prime}, which can be solved explicitly for all values of p and q. Therefore, when $n=1$, we obtain the sharp constants and optimal functions of all the Gagliardo-Nirenberg inequalities (1) for $1<q<p$ (see Corollary 3.3). When $n \geqslant 2$, we show that the condition $H^{\prime \prime}(t) \int_{0}^{t} \frac{d s}{H^{\prime}(s)}=$ constant, leads to the subclass of the Gagliardo-Nirenberg inequalities where $q=1+\frac{p}{2}$ or $q=2(p-1)$. In these cases, we recover previous results obtained in [6] (see Corollary 3.4). Our method shows that when $n \geqslant 2$, the sharp constants and optimal functions of the Gagliardo-Nirenberg inequalities (1) in the cases $q=$ $1+\frac{p}{2}$ and $q=2(p-1)$ follow from a linear first order ODE, while the remaining Gagliardo-Nirenberg inequalities require solving the non-linear ODE (5), which is certainly more involved. We point out that our analysis generalizes to all the L^{r}-Gagliardo-Nirenberg inequalities for $1<r<n$, [2]. Finally, to see how these inequalities link to Mass transportation theory, we refer to [1,2]. Throughout the paper, $\|u\|_{r}$ denotes the L^{r}-norm of $u: \mathbb{R}^{n} \rightarrow \mathbb{R}, \chi_{A}$ stands for the characteristic function of $A \subset \mathbb{R}^{n}$, and $\operatorname{sign}(u)$ is the sign of u.

2. Sharp constants in Gagliardo-Nirenberg/Nash's inequalities

In this section, we derive the sharp constant of the Gagliardo-Nirenberg/Nash's inequality (1), assuming that the variational problem (2) has a minimizer. The existence of a minimizer to this problem will be discussed in the next section (see Theorem 3.1).

Theorem 2.1. Let n, p, q be such that $1 \leqslant q<p<2^{*}:=\frac{2 n}{n-2}$ if $n>2$, and $1 \leqslant q<p$ if $n=1,2$. Assume that the variational problem (2) has a minimizer u_{∞}. Then the Gagliardo-Nirenberg/Nash's inequality (1) holds, with $\theta=\frac{2 n(p-q)}{p[2 n-q(n-2)]}$, and the sharp constant $K_{\mathrm{opt}}>0$ is explicitly given by

$$
\begin{equation*}
K_{\mathrm{opt}}=\left[\frac{K(n, p, q)}{E\left(u_{\infty}\right)}\right]^{\frac{2 n+2 p-n q}{\frac{22 n-q(n-2)]}{2 n-2}},} \tag{6}
\end{equation*}
$$

where $K(n, p, q)=\frac{\alpha+\beta}{(q \alpha)^{\frac{\alpha}{\alpha+\beta}}(2 \beta)^{\frac{\beta}{\alpha+\beta}}}, \alpha=2 n-p(n-2), \beta=n(p-q)$.
Moreover, $u_{\sigma, \bar{x}}(x)=C u_{\infty}(\sigma(x-\bar{x}))$ are extremals in (1), for arbitrary $C>0, \sigma \neq 0$ and $\bar{x} \in \mathbb{R}^{n}$.
Proof. Since u_{∞} is a minimizer to (2), we have that

$$
\begin{equation*}
E\left(u_{\infty}\right) \leqslant E\left(\frac{u}{\|u\|_{p}}\right) \leqslant \frac{\|\nabla u\|_{2}^{2}}{2\|u\|_{p}^{2}}+\frac{\|u\|_{q}^{q}}{q\|u\|_{p}^{q}}, \quad \forall u \in D^{1, q}\left(\mathbb{R}^{n}\right) \tag{7}
\end{equation*}
$$

with equality if $u=u_{\infty}$. Scaling u as $u_{\lambda}(x)=u\left(\frac{x}{\lambda}\right)$, we have

$$
\begin{equation*}
E\left(u_{\infty}\right) \leqslant \min _{\lambda>0}\left[\frac{\lambda^{n-2-\frac{2 n}{p}}}{2} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{p}^{2}}+\frac{\lambda^{n\left(1-\frac{q}{p}\right)}}{q} \frac{\|u\|_{q}^{q}}{\|u\|_{p}^{q}}\right]:=\min _{\lambda>0} f(\lambda) \tag{8}
\end{equation*}
$$

for all $0 \neq u \in D^{1, q}\left(\mathbb{R}^{n}\right)$. The minimizer of $f(\lambda)$ is achieved at

$$
\begin{equation*}
\lambda_{\text {min }}=\left[\frac{2-n+\frac{2 n}{p}}{n\left(1-\frac{q}{p}\right)} \frac{A}{B}\right]^{\frac{p}{2 n+2 p-n q}}, \quad A=\frac{\|\nabla u\|_{2}^{2}}{2\|u\|_{p}^{2}}, B=\frac{\|u\|_{q}^{q}}{q\|u\|_{p}^{q}} . \tag{9}
\end{equation*}
$$

Then (8) reads as (1) with the best constant given by (6). Clearly u_{∞} is an optimal function of (1). And since (1) is invariant under translation, scaling and multiplication by a constant, then $u_{\sigma, \bar{x}}(x)=C u_{\infty}(\sigma(x-\bar{x}))$ are optimal functions of (1), for arbitrary $C>0, \sigma \neq 0$ and $\bar{x} \in \mathbb{R}^{n}$.

3. Extremals in Gagliardo-Nirenberg inequalities

This section is devoted to the study of the variational problem (2), and to the computation of an explicit minimizer u_{∞} to this problem. Below, we study the existence of a minimizer to (2), and we establish some of its properties which will be needed later.

Theorem 3.1. Let n, p, q be as in Theorem 2.1. Then, the variational problem (2) has a minimizer u_{∞}, which can be chosen non-negative, radially-symmetric, decreasing and tends to 0 as $|x|$ tends to ∞. Moreover, u_{∞} is the unique radial ground state of the PDE

$$
\begin{equation*}
-\Delta u+u^{q-1}-\lambda u^{p-1}=0 \tag{10}
\end{equation*}
$$

where $\lambda>0$ (the Lagrange multiplier) is chosen so that the normalization condition $\|u\|_{q}=1$ holds. Therefore the unique radial ground state of (10) (for a well chosen λ) is a minimizer of (2).

Proof. The existence of a minimizer to (1) follows by compactness. For the properties of the minimizer, we use a rearrangement argument, and for the uniqueness, we refer to Serrin and Tang [10].

Now, we establish the ODE leading to the computation of the minimizer u_{∞} of problem (2) - i.e., the unique radial ground state of PDE (10) -, and we solve it in general when $n=1$, and in some particular cases when $n>1$.

Using the rescaled function $\bar{u}_{\infty}(x)=\lambda^{\frac{1}{p-q}} u_{\infty}\left(\lambda^{\frac{q-2}{2(p-q)}} x\right)$ in the PDE (10), we have that \bar{u}_{∞} is the radial ground state of the PDE $-\Delta u+u^{q-1}-u^{p-1}=0$. Then there exists a non-negative, decreasing function $v:[0, \infty) \rightarrow[0, \infty)$ satisfying $v(\infty)=v^{\prime}(\infty)=0$, such that $\bar{u}_{\infty}(x)=v(r), r:=|x|$, and $v(r)$ solves the ODE

$$
\begin{equation*}
v^{\prime \prime}(r)+(n-1) \frac{v^{\prime}(r)}{r}-v^{q-1}(r)+v^{p-1}(r)=0, \tag{11}
\end{equation*}
$$

which is equivalent to the previous PDE. Now, using that $v(r)=v \circ g\left(\frac{r^{2}}{2}\right)$ where $g(t)=\sqrt{2 t}$, that v and g are both invertible, and setting $H=(v \circ g)^{-1}$, we have that

$$
\begin{equation*}
H(v(r))=\frac{r^{2}}{2} \tag{12}
\end{equation*}
$$

and H is decreasing on $(0, v(0))$, with $\lim _{t \rightarrow 0^{+}} H(t)=\infty$ and $\lim _{t \rightarrow 0^{+}} H^{\prime}(t)=-\infty$ if $q \geqslant 2$, while $0<$ $\lim _{t \rightarrow 0^{+}} H(t)<\infty$ if $q<2$ as $v(r)$ has a compact support in this case. The change of function (12) is suggested by the link between certain Gagliardo-Nirenberg inequalities and Mass transportation theory (see details in [2]). The following theorem establishes a first order ODE for H^{\prime}, which leads to the computation of u_{∞}.

Theorem 3.2. Let n, p, q be as in Theorem 2.1. Let H be defined as in (12) where $v(r)$ is a non-negative, decreasing solution of (11) such that $v(\infty)=v^{\prime}(\infty)=0$. Then $H(t)$ satisfies the non-linear ODE

$$
\begin{equation*}
2\left(\frac{t^{q}}{q}-\frac{t^{p}}{p}\right) H^{\prime \prime}(t)+\left(t^{q-1}-t^{p-1}\right) H^{\prime}(t)-2(n-1) H^{\prime \prime}(t) \int_{0}^{t} \frac{\mathrm{~d} s}{H^{\prime}(s)}=n \tag{13}
\end{equation*}
$$

for all $t \in(0, v(0))$, and $\lim _{t \rightarrow 0^{+}} H(t)=\infty$ and $\lim _{t \rightarrow 0^{+}} H^{\prime}(t)=-\infty$ if $q \geqslant 2$, while $0<\lim _{t \rightarrow 0^{+}} H(t)<\infty$ if $q<2$.

Proof. First, we differentiate $H(v(r))=\frac{r^{2}}{2}$ and combine it with (11) to have that

$$
\begin{equation*}
-v^{\prime \prime}(r)=\frac{n-1}{H^{\prime}(v(r))}-v^{q-1}(r)+v^{p-1}(r) . \tag{14}
\end{equation*}
$$

Then we multiply (14) by $v^{\prime}(r)$, and integrate over (r, ∞) to obtain that

$$
\begin{equation*}
v^{\prime}(r)^{2}=2\left(\frac{v^{q}(r)}{q}-\frac{v^{p}(r)}{p}\right)-2(n-1) \int_{0}^{v(r)} \frac{\mathrm{d} s}{H^{\prime}(s)} \tag{15}
\end{equation*}
$$

Next, we differentiate $H(v(r))=\frac{r^{2}}{2}$ twice with respect to r to get

$$
\begin{equation*}
v^{\prime \prime}(r) H^{\prime}(v(r))+v^{\prime}(r)^{2} H^{\prime \prime}(v(r))=1 . \tag{16}
\end{equation*}
$$

Finally, we insert (14) and (15) into (16) to yield (13) after changing $v(r)$ into t.

Corollary 3.3. If $n=1$ and $1 \leqslant q<p$, then

$$
\begin{equation*}
H^{\prime}(t)=\frac{p}{2 t^{\frac{q}{2}} \sqrt{\left|\frac{p}{q}-t^{p-q}\right|}} \int \frac{\mathrm{d} t}{\operatorname{sign}\left(\frac{p}{q}-t^{p-q}\right) t^{\frac{q}{2}} \sqrt{\left|\frac{p}{q}-t^{p-q}\right|}} \tag{17}
\end{equation*}
$$

is a solution of ODE (13). Therefore the minimizer u_{∞} of problem (2) can be computed explicitly via (17) and (12), and Theorem 2.1 gives the sharp constant, K_{opt}, and the optimal functions, $u_{\sigma, \bar{x}}(x)=C u_{\infty}(\sigma(x-\bar{x}))$, of all the Gagliardo-Nirenberg and Nash's inequalities (1) when $n=1$ and $1 \leqslant q<p$.

Proof. If $n=1$, (13) reduces to a linear first order ODE in H^{\prime} whose solution is given by (17).
Example 1. The minimizer u_{∞} of problem (2) is given by,
(i) If $q=2<p$, then

$$
u_{\infty}(x)=\left(\frac{p}{2 \lambda}\right)^{\frac{1}{p-2}}\left[\cosh \left(\frac{p-2}{2}|x|\right)\right]^{-\frac{2}{p-2}},
$$

where λ is determined by $\left\|u_{\infty}\right\|_{p}=1$.
(ii) If $1 \leqslant q<p=2$, then

$$
u_{\infty}(x)=\left(\frac{2}{q \lambda}\right)^{\frac{1}{2-q}}\left[\cos \left(\frac{2-q}{2}|x| \sqrt{\lambda}\right)\right]^{\frac{2}{2-q}} x_{\left[|x| \leqslant \frac{\pi}{(2-q) \sqrt{\lambda}}\right]}(x) .
$$

In particular, when $q=1$ (i.e., L^{2}-Nash's inequality in dimension $n=1$), we have

$$
u_{\infty}(x)=\frac{2}{\lambda} \cos ^{2}\left(\frac{|x| \sqrt{\lambda}}{2}\right) \chi_{\left[|x| \leqslant \frac{\pi}{\sqrt{\lambda}}\right]}(x)=\frac{1}{\lambda}(1+\cos (|x| \sqrt{\lambda})) \chi_{\left[|x| \leqslant \frac{\pi}{\sqrt{\lambda}}\right]}(x),
$$

where λ is determined by $\left\|u_{\infty}\right\|_{p}=1$. Note that the sharp constant and extremals of the L^{2}-Nash's inequality are first obtained by Carlen and Loss in [4].

If $n>1$, we have not been able to solve (13) in general. But, if we furthermore assume that

$$
\begin{equation*}
H^{\prime \prime}(t) \int_{0}^{t} \frac{\mathrm{~d} s}{H^{\prime}(s)}=k=\text { constant } \tag{18}
\end{equation*}
$$

then (13) becomes again linear, and can be solved explicitly. In this case, we recover the subclass $q=1+\frac{p}{2}$ and $q=2(p-1)$, of the Gagliardo-Nirenberg inequalities obtained by Del-Pino and Dolbeault in [6].

Corollary 3.4. Under the hypotheses of Theorem 3.2, assume that H satisfies (18). Then H solves ODE (13) if and only if $q=1+\frac{p}{2}$ or $q=2(p-1)$. Therefore,
(i) If $q=1+\frac{p}{2},(p>2)$, then $H(t)=\frac{2(2 n-p(n-2))}{(p-2)^{2}} t^{1-\frac{p}{2}}+\gamma$, for some constant γ, and

$$
\begin{equation*}
u_{\infty}(x)=\left[\frac{(p-2)^{2}}{4(2 n-p(n-2))}\right]^{\frac{1}{1-p / 2}}\left(|x|^{2}+\frac{2 \lambda(2 n-p(n-2))^{2}}{p(p-2)^{2}}\right)^{\frac{1}{1-p / 2}} \tag{19}
\end{equation*}
$$

is a minimizer of (2), where $\lambda>0$ is uniquely determined by the constraint $\left\|u_{\infty}\right\|_{p}=1$.
(ii) If $q=2(p-1),(1<p<2)$, then $H(t)=-\frac{2(n-1)-p(n-2)}{(2-p)^{2}} t^{2-p}+\gamma$, for some constant γ, and

$$
\begin{equation*}
u_{\infty}(x)=\left[\frac{\lambda(2-p)^{2}}{2(2(n-1)-p(n-2))}\right]^{\frac{1}{2-p}}\left(\frac{(2(p-1)+n(2-p))^{2}}{\lambda^{2}(p-1)(2-p)^{2}}-|x|^{2}\right)_{+}^{\frac{1}{2-p}} \tag{20}
\end{equation*}
$$

is a minimizer of (2), where $\lambda>0$ is uniquely determined by the constraint $\left\|u_{\infty}\right\|_{p}=1$.

In both cases, the best constants $K_{\text {opt }}$, and optimal functions $u_{\sigma, \bar{x}}$ of the corresponding Gagliardo-Nirenberg inequalities (1) are given by Theorem 2.1 where u_{∞} is defined by (19) or (20).

Proof. (18) gives that $H^{\prime}(t)=-A t^{\frac{k}{k+1}}$ for some $A>0$. Inserting this expression into (13) where we first substitute (18), we have that

$$
\begin{equation*}
\left(\frac{2 k}{q(k+1)}+1\right) t^{q-\frac{1}{k+1}}-\left(1+\frac{2 k}{p(k+1)}\right) t^{p-\frac{1}{k+1}}=-\frac{n+2(n-1) k}{A}, \quad \forall t \in(0, v(0)) . \tag{21}
\end{equation*}
$$

Since $p \neq q$, (21) holds for all t, if and only if

$$
q-\frac{1}{k+1}=0 \quad \text { and } \quad 1+\frac{2 k}{p(k+1)}=0, \quad \text { or } \quad 1+\frac{2 k}{q(k+1)}=0 \quad \text { and } \quad p-\frac{1}{k+1}=0 .
$$

We deduce that $q=1+\frac{p}{2}$ or $q=2(p-1)$. (19) and (20) follow easily by integrating $H^{\prime}(t)=-A^{\frac{k}{k+1}}$ and using (21) and (12).

References

[1] M. Agueh, Sharp Gagliardo-Nirenberg inequalities and Mass transport theory, J. Dynam. Differential Equations 18 (4) (2006) $1069-1093$.
[2] M. Agueh, Sharp Gagliardo-Nirenberg inequalities via p-Laplacian type equations, Nonlinear Differential Equations, submitted for publication.
[3] M. Agueh, N. Ghoussoub, X. Kang, Geometric inequalities via a general comparison principle for interacting gases, Geom. Funct. Anal. 14 (2004) 215-244.
[4] E. Carlen, M. Loss, Sharp constant in Nash's inequality, Internat. Math. Res. Not. 7 (1993) 213-215.
[5] D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math. 182 (2004) 307-332.
[6] M. Del-Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. 90 (81) (2002) 847-875.
[7] E. Gagliardo, Proprietà di alcune classi di funzioni più variabili, Ric. Mat. 7 (1958) 102-137.
[8] H.A. Levine, An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl. (4) 124 (1980) 181-197.
[9] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Pisa 13 (1959) 116-162.
[10] J. Serrin, M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (3) (2000) $897-923$.

[^0]: E-mail address: agueh@math.uvic.ca.
 1 The author is supported by a grant from the Natural Science and Engineering Research Council of Canada.

