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Abstract

In this work, we present a HLLC scheme modification for application to non-homogeneous shallow-water equations with pollu-
tant transport. This new version is related to the definition of a consistent approximation of the intermediate wave speed. Numerical
results are presented to illustrate the importance of such approximation to get appropriate pollutant concentration profiles. To cite
this article: E.D. Fernández-Nieto et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une vitesse de propogation intermédiaire consistante pour un schéma HLLC bien équilibré. Nous présentons une modifi-
cation du schéma HLLC pour application aux équations de Saint-Venant non homogènes avec transport de polluants. Cette nouvelle
version du schéma est reliée à la définition d’une vitesse d’onde intermédiaire consistante. Un exemple est donné afin d’illustrer les
conséquences d’une mauvaise approximation de la vitesse intermédiaire sur des résultats de l’approximation de la concentration
en polluant même avec un schéma bien équilibré. Pour citer cet article : E.D. Fernández-Nieto et al., C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous proposons une extension du schéma HLLC pour les équations de Saint-Venant avec topographie et propaga-
tion polluantes (voir [6]). Pour ce système le schéma HLLC peut s’écrire en fonction du flux numérique provenant du
schéma HLL.

Pour le cas homogène, ce schéma est basé sur le fait que la troisième composante du flux peut s’écrire en fonction
de sa première composante et de la concentration en polluant. La définition de la troisième composante du flux est
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donnée par :[
Fhllc

i+1/2

]
3 = [

Fhll
i+1/2

]
1ϕ

∗.

La définition de ϕ∗ est simplement la concentration du polluant à gauche ou à droite du point x = xi+1/2 en fonction
du signe de la vitesse intermédiaire S∗.

Pour le cas non homogène nous considérons un schéma de type HLL écrit comme fonction du flux numérique
dépendant de la définition du terme de front (voir [5,8]). Ceci va nous permettre d’obtenir une extension naturelle
du schéma HLLC au cas non homogène à partir du cas homogène. Nous prouvons que le schéma proposé détermine
exactement la solution stationnaire de l’eau au repos et qu’il est asymptotiquement bien équilibré (voir [5]) indépen-
damment de la définition de S∗. Nous proposons alors une modification de S∗, qui dépend de la topographie, égale à
zéro au repos et qui évite des pics anormaux de polluant. À titre d’exemple, nous établissons un test numérique sur
lequel nous observons l’importance de cette modification. L’expression de S∗ est donnée par (5).

1. Introduction

In this Note we study the extension of the HLLC solver to the Shallow Water Equations (SWE) with topography
term, either in the 1D case with pollutant or equivalently in the 2D case.

The HLLC solver is an improvement of HLL solvers. HLL solver is low cost-computing since no characteristic
decomposition is required. However, HLL solver considers only the maximum and the minimum eigenvalues of the
system, hence the scheme presents a large diffusion related to the intermediate field. For 1D SWE with pollutant or
2D SWE, we have three characteristics fields. At contrary, HLLC solver takes into account the intermediate velocity,
see e.g. [16].

In order to extend the HLLC solver to the non-homogeneous case, we study its well-balance properties. Also,
HLLC solver needs to predict the intermediate wave speed at intercells, thus we propose a consistent definition.

The well-balanced properties are related to the stationary solutions of the system. In our case, we seek numerical
schemes that preserves at least the solution of water at rest. This is the so-called C-property introduced by Bermúdez
and Vázquez in [2]. In [10], Greenberg and Leroux introduce the concept of well-balanced numerical schemes: they
define a numerical scheme that balances the different terms for a non-homogeneous hyperbolic equation. The well-
balanced property for hyperbolic systems with source terms has been studied for kinetic schemes (see Perthame and
Simeoni, [14]), relaxation solvers (see Bouchut, [3]) and a family of Q-schemes (see Chacón et al., [4]).

Another approach consists in rewriting the hyperbolic system with source term as a purely non-conservative term,
by including a new equation. In that approach, because of the presence of non-conservative products, a new definition
of weak solution must be introduced, depending on the choice of a family paths, see Dal Maso et al. [7], Parés and
Castro [13], Gosse [6], LeFloch and Tzavaras [11]. Also the well-balanced properties of a numerical scheme can be
related to its convergence. In [15], the authors prove an extension of Lax–Wendroff theorem which is related to the
well-balance properties.

In [5], the authors introduce the concept of asymptotically well-balanced. A numerical scheme verifies this property
if it preserves all regular stationary solutions of the non-homogeneous hyperbolic system over a set whose the measure
of the complementary tends to zero when the space step �x tends to zero. We will consider this property in the present
paper.

In the present paper, we present a natural extension of the HLLC solver to the non-homogeneous SWE with pollu-
tant. We show that, independently of the definition of the intermediate wave speed S∗, the scheme is asymptotically
well-balanced. Anyway, we show that we need to define a consistent S∗ depending on the source term that means
an expression which vanish when water is at rest. To illustrate such phenomena, we present a numerical test which
compare the same well-balanced scheme but with two different definitions of S∗, consistent or not.

This paper is organized as follows. In Section 2, we present the 1D SWE equations we consider. In Section 3, we
present the well-known HLL and HLLC solvers in the homogeneous case. In Section 4, we propose the extension of
HLLC solvers, based on given HLL solvers. We show some properties of the proposed HLLC solver and propose a
consistent definition of the intermediate wave speed at interfaces S∗. In Section 5, we present a numerical test which
show the good results obtained when a well-balanced HLLC solver with a consistent definition of S∗ are considered
and bad results if S∗ is not consistent.
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2. The equations

We denote the vectors of unknowns by W : R × R+ → Rm, and by F : Rm → Rm the flux function. The conserva-
tion law we consider is the following:

∂tW(x, t) + ∂xF
(
W(x, t)

) = G(x,W), x ∈ [0,L], t ∈ [0, T ] (1)

with: W = (h, q, r)T , h = h(x, t) is the height of the water column at instant t and position x, q = hu is the discharge,

u is the averaged horizontal velocity, r is the third unknown, F(W) = (q,
q2

h
+ 1

2gh2,
qr
h

)T , g is the gravity constant
and G(x,W) = (0,−ghz′

b(x),0)T is the source term, where zb denotes the topography.
In the case where we consider the 1D SWE with pollutant, r = hϕ with ϕ the pollutant concentration. In the case

where we consider the 2D SWE, we have: ∂tW + divF(W) = 0, with W = (h, �q)T , h the water depth, �q = (q1, q2)

the discharge, �q = h�u, �u the depth-averaged velocity, F(W) = (G(W),H(W))T is the flux vector. Then, if we use the
rotational invariance property of the equations, see [16], then the 2D SWE are reduced to a sum of 1D local Riemann
problems, which are the same equations than the previous 1D SWE with pollutant.

3. The standard HLL and HLLC schemes for homogeneous case

Using a conservative finite volume method, the general structure is the following. We define the points xi = i�x

as a partition of [0,L] with constant step �x. For a given time t = tn, we set tn+1 = tn + �t . The time step �t is
such that stability condition is satisfied. Then, if we denote Wn

i ≈ 1
�x

∫ xi+1/2
xi−1/2

W(x, tn)dx, a conservative three point
finite volume scheme is:

Wn+1
i − Wn

i

�t
+ Fn

i+1/2 − Fn
i−1/2

�x
= 0,

where Fn
i+1/2 = Fi+1/2(W

n
i ,Wn

i+1) is the numerical flux function.

The eigenvalues of the Jacobian matrix of the flux are: λ1 = (u− c), λ2 = u, λ3 = (u+ c) with c = √
gh. The HLL

solver is defined by:

Fhll
i+1/2 = SRF(Wi) − SLF(Wi+1) + SLSR(Wi+1 − Wi)

SR − SL

,

where SL and SR are approximations of lower and upper bounds respectively, of the smallest and largest local speeds.
We set: SL = min{λ1(Wi),0} and SR = max{λ3(Wi+1),0}, but other definitions are possible, see [16].

The HLLC solver takes into account the intermediate eigenvalue λ2 = u. A possible version of HLLC solvers (for
the homogeneous SWE) is such that the flux function relates the flux corresponding to the passive scalar to the flux
of the mass conservation equation, see [16]. Namely, we set: [F ]3 = [F1] · ϕ (with ϕ = r/h). So, the first and second
component of the flux are approximated by a given HLL solver. And the third component is approximated using the
first component of the numerical flux of HLL solver as follows:[

Fhllc
i+1/2

]
3 = [

Fhll
i+1/2

]
1 · ϕ∗,

where ϕ∗ = ri/hi if S∗ � 0 and ϕ∗ = ri+1/hi+1 if S∗ < 0. The value of S∗ must approximate the intermediate wave
speed at intercell xi+1/2. In [16], different definitions of S∗ can be found. The following definition is a common
choice:

S∗ = SLhi+1(ui+1 − SR) − SRhi(ui − SL)

hi+1(ui+1 − SR) − hi(ui − SL)
. (2)

4. Extension to the non-homogeneous case

In this section we present the extension of the HLLC solvers to the non-homogeneous case. It is based on two
points: (i) the structure of the scheme in conservative form; (ii) a consistent definition of S∗. In Section 4.1, we present
the extension of the HLLC solver and a consistent definition of S∗. In Section 4.2, we summarize some possible
choices for HLL solvers. In Section 4.3, we show the well-balanced properties of the proposed HLLC scheme.
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4.1. HLLC scheme with source term

If we consider numerical schemes in conservative form, the structure is obtained by integrating (1) on the control
volume (xi−1/2, xi+1/2). This gives:

Wn+1
i − Wn

i

�t
+ Fn

G,i+1/2 − Fn
G,i−1/2

�x
= Gn

i , (3)

where Gn
i is a centered approximation of G at x = xi : Gi = (Gi−1/2 + Gi+1/2)/2. If we consider a Godunov solver,

Fn
G,i+1/2 is the approximation of F(W(xi+1/2, t

n)) where W is the solution of the non-homogeneous Riemann prob-
lem.

Let us point out that we do not follow the standard approach which consists to consider the homogeneous flux
then upwind the source term, see [2]. Here, Fn

G,i+1/2 depends on the source term G. Moreover, we notice that under
structure (3), the extension of HLLC solver is simple and natural. If we consider a given HLL numerical flux, we can
apply the same idea as for the homogeneous system: let us denote by Fhll

G the HLL numerical flux in the presence of
source term G. Then, the first and second components of Fhllc

G are equal to Fhll
G , and we set:[

Fhllc
G

]
3 = [

Fhll
G

]
1 · ϕ∗, (4)

with ϕ∗ = ri/hi if S∗ > 0 and ϕ∗ = ri+1/hi+1 if S∗ < 0.
Concerning the definition of S∗, we can consider (2). Nevertheless, we can easily prove that for water at rest

solution, this definition leads to S∗ 	= 0 (see also [9]). Thus, we propose the following definition:

S∗ = SLqi+1 − SRqi − SLSR(hi+1 − hi − �x[Ã−1(Wi+1/2)Gi+1/2]1)

hi+1(ui+1 − SR) − hi(ui − SL)
, (5)

where Gi+1/2 is approximation of G at x = xi+1/2. Concretely we set [Gi+1/2]l = 0, for l = 1, l = 3, and

[Gi+1/2]2 = −g
hi + hi+1

2

zb(xi+1) − zb(xi)

�x
.

By Ã−1(Wi+1/2) we denote an approximation of the inverse matrix of A at xi+1/2, and if an eigenvalue of A vanish
then the corresponding eigenvalue of Ã−1 is set to zero.

4.2. Well-balanced HLL solvers

In this subsection, we present briefly the existing HLL scheme extended to the non-homogeneous case which
respect the well-balance property. We rewrite them under the structure (3), (4) we are interested in.

We can classify these HLL solvers for SWE with topography term in two types: (i) well-balanced schemes for the
water at rest solution only; (ii) well-balanced schemes for all stationary solutions.

(i) The idea followed by many studies consists to use a scheme for the homogeneous case but evaluated at different
states taking into account the topography term. That is,

Fhll
G,i+1/2 = Fhll

i+1/2

(
W−

i+1/2,W
+
i+1/2

)
, verifying

(
W+

i+1/2 − W−
i+1/2

) = 0 for water at rest.

For example, Zhou et al. propose in [17] a linear approximation satisfying the previous property. LeVeque in [12]
proposes a technique that build the states preserving a desired stationary solution. In the case of water at rest, LeVeque
proposes to replace h by the water surface. Also, the hydrostatic reconstruction proposed by Audusse et al. in [1] can
be applied. In this case, the water column is evaluated by adding and substituting two evaluations of the topography.
Another technique consists to rewrite the SWE in function of the water surface and not in function of the water.

(ii) A well-balanced HLL solver for all stationary solutions is presented in [8]. It is defined as follows:

Fhll
G,i+1/2 = F(Wi) + F(Wi+1)

2
− 1

2

(
SR + SL

SR − SL

(
F(Wi+1) − F(Wi) − �xG

))

+ SRSL

SR − SL

(
Wi+1 − Wi − �xÃ−1(Wi+1/2)Gi+1/2

)
. (6)

This scheme can be applied to any hyperbolic system with source term, hence to SWE with topography term. It is
asymptotically well-balanced in the sense of [5]. That is, this scheme preserves any steady state up to second order.
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4.3. Well-balanced and consistent HLLC solvers

We can use any of the previous versions of HLL solvers. Then, following the structure (3), (4), we obtain the
corresponding HLLC solver. Let us study their well-balanced properties. We have:

Theorem 4.1. If the HLL solver is well-balanced, then the HLLC solver defined by (4) is well-balanced too, indepen-
dently of the definition of S∗.

The proof is straightforward since all stationary solutions verify q = 0 or ϕ constant.

Corollary 4.2. (a) Any HLLC solver built from a HLL solver of type (i) (see Section 4.2) preserves the water at rest
solution.

(b) Any HLLC solvers builded from HLL solver of type (ii) is well-balanced for any stationary solutions (in the
sense of [5]). This remains true independently of the definition of S∗.

As we wrote above, the well-balanced properties are independent of the definition of S∗. Nevertheless, we proposed
in (5) a modification of the classical definition of S∗ in order to take into account the topography term. Then, we have
the following result:

Theorem 4.3. The intermediate wave speed S∗ defined by (5) is an approximation of u at third order in space for any
stationary solution. Furthermore, S∗ vanishes when water is at rest.

The proof is based on the fact that any stationary solution of SWE verifies q constant. Moreover (hi+1 − hi −
�x[Ã−1Gi+1/2]1) = O(�x3) for any stationary solution and it vanishes for water at rest.

5. Numerical tests

Let us consider the 1D SWE with pollutant: r = hϕ with ϕ the pollutant concentration. Then, we show an influence
of the definition of S∗ on the pollutant concentration. We consider a domain of 4 meters long discretized with 50
points, a CFL condition equal to 0.9, the initial conditions h(x,0) = (18 − zb(x)), q(x,0) = h(x,0). We consider the
topography zb and r defined by, see Fig. 1:

zb(x) =
{

1, 1.5 < x < 2.5,

0, otherwise,
r(x) =

{
h(x), 1.5 < x < 2.5,

0, otherwise.

(a) (b)

Fig. 1. (a) Pollutant concentration and topography; (b) Value of S∗.
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We set the final time to T = 0.5 s. In Fig. 1(a), we plot the computed pollutant concentration and the topography.
We can observe the two different concentration values obtained with S∗ defined by (2) (black dots) and (5) (squares)
respectively. In the first case, S∗ is not a consistent approximation of the velocity. In that case, we obtain a negative
value near x = 2.5, see Fig. 1(b). On the left of x = 2.5, S∗ is positive and it is negative at x = 2.5. Thus, the pollutant
is transported to the right until this point and transported to the left at x = 2.5 only. This produces the pollutant peak
observed in Fig. 1(a). At contrary, if we consider the consistent definition of S∗ (5) then S∗ is positive everywhere and
the pollutant is transported smoothly, without any peak.

Furthermore, we can notice in Fig. 1(b) that S∗ is defined at intercells x = xi+1/2, and the velocity is defined at
points x = xi (line with cross). Then, we can observe that S∗ defined by (5) is effectively a good approximation of the
velocity at intermediate points.
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