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Abstract

We want to describe an abstract construction of Hardy spaces H 1 using an atomic decomposition and then we describe the use of
these spaces in a point of view of interpolation. Mainly, we look for weakest assumptions to obtain an interpolation result between
these Hardy spaces and Lebesgue spaces. To cite this article: F. Bernicot, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Utilisation des espaces de Hardy et interpolation. Nous présentons une construction abstraite d’espaces de Hardy H 1 par
une décomposition atomique et nous décrivons l’utilisation de ces espaces avec pour but de les interpoler. Nous donnerons alors
des hypothèses les plus faibles pour obtenir un résultat d’interpolation entre ces « nouveaux » espaces de Hardy et les espaces de
Lebesgue. Pour citer cet article : F. Bernicot, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, the author wants to improve the understanding of the use of Hardy spaces aiming to obtain continuities
in Lebesgue spaces. Let us describe one of the main interest of Hardy spaces in the euclidean case. Assume that
we have a linear operator T bounded on Lp0(Rn) for an exponent p0 > 1. If in addition T is bounded from the
“classical” Hardy space H 1(Rn) into L1(Rn), then by interpolation we deduce that T is Lp(Rn)-bounded for all
exponent p ∈ (1,p0).

We are very interested by this use of Hardy spaces and we want to describe the most abstract framework to compute
this kind of argument. For ten years, many people have described in numerous papers some Hardy spaces, adapted
to certain operators, by using maximal functions or atomic and molecular decompositions. It appears that the spaces
obtained by atomic decompositions are smaller (strictly or not) than those defined by the corresponding maximal
function.

That is why we shall define our Hardy spaces by an atomic structure and we will describe abstract assumptions
to be able to interpolate our Hardy spaces with Lebesgue spaces. Specially, we want to emphasize that the study of
the whole Hardy space is not useful for what we want. As we shall see, we have just to understand the action of an
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operator on the set of atoms to obtain continuities in Lebesgue spaces. The structure of the whole Hardy space seems
to be more useful to describe the dual space for example.

2. Definitions of Hardy spaces

Let (X,d,μ) be a space of homogeneous type: d is a quasi-distance on the space X and μ a Borel measure
satisfying the doubling property:

∃A > 0, ∃δ > 0, ∀x ∈ X, ∀r > 0, ∀t � 1,
μ(B(x, tr))

μ(B(x, r))
� Atδ, (1)

where B(x, r) is the open ball with center x ∈ X and radius r > 0. We write Lp := Lp(X,d,μ) for the Lebesgue
spaces.

We now define the Hardy spaces using abstract “oscillation operators”. Let β ∈ (1,∞] be a fixed exponent and
B := (BQ)Q∈Q be a collection of Lβ -bounded linear operators, indexed by Q the collection of all the balls Q of the
space X. We assume that these operators BQ are uniformly bounded on Lβ : there exists a constant 0 < A′ < ∞ so
that:

∀f ∈ Lβ, ∀Q ball,
∥∥BQ(f )

∥∥
Lβ � A′‖f ‖Lβ . (2)

We define atoms by using the collection B:

Definition 2.1. A function m ∈ L1
loc is called an atom associated to a ball Q if there exists a real function fQ supported

on the ball Q such that m = BQ(fQ), with(∫
Q

|fQ|β dμ

)1/β

� μ(Q)−1/β ′
.

The functions fQ in this definition are normalized in L1. It is easy to check that ‖fQ‖L1 � 1. In [3], the authors
have defined the concept of molecules associated to the collection B. Now we can define our abstract atomic Hardy
spaces:

Definition 2.2. A measurable function h belongs to the atomic Hardy space H 1
ato if there exists a decomposition:

h =
∑
i∈N

λimi μ-a.e.,

where for all i, mi is an atom and (λi)i are real numbers satisfying∑
i∈N

|λi | < ∞.

We equip H 1
ato with the norm:

‖h‖H 1
ato

:= inf
h=∑

i∈N
λimi

∑
i

|λi |.

Remark 1. We only ask that the decomposition

h(x) =
∑
i∈N

λimi(x)

is well defined for almost every x ∈ X. So the assumption is very weak and it is possible that the measurable function
h does not belong to L1

loc. It is not clear whether this abstract normed vector space is complete. Fortunately, this
property is not required for our aim.

Example 1. By the atomic decomposition of the Coifman–Weiss space (see [5]), we know that we exactly regain this
space H 1 = H 1

ato with
CW
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BQ(f )(x) = f (x)1Q(x) − μ(Q)−1
(∫

f dμ

)
1Q(x).

In addition in this case, it is well-known and interesting to remark that this space does not depend on β ∈ (1,∞). For
other examples and comparisons with already studied Hardy spaces, we refer the reader to Section 3 of [3].

As we will see, we need to use smaller spaces:

Definition 2.3. According to the collection B, we introduce the set H 1
F,ato ⊂ H 1

ato ∩ Lβ , given by the finite sums of
atoms with the following norm

‖f ‖H 1
F,ato

:= inf
f =∑

i λimi

∑
i

|λi |.

We take the infimum over all the finite atomic decompositions.

Remark 2. The norms on the atomic space H 1
ato and on the finite atomic space H 1

F,ato may not be equivalent (see a
counterexample of Y. Meyer for the Coifman–Weiss space in [10]).

The use of these smaller spaces is very convenient. As explained in [4] and [9], to check that an operator admits a
continuous extension on the Hardy space H 1

ato is a technical problem and requires extra assumptions. As we will see,
in order to obtain interpolation results, we only use boundedness on the finite space H 1

F,ato, which is far more simple
to be satisfied.

3. Result of interpolation between Hardy and Lebesgue spaces

To describe our main result, we need to require some assumptions on the Hardy spaces and need some definitions:

Definition 3.1. For σ ∈ [1,∞] we define the maximal operator:

∀x ∈ X, Mσ (f )(x) := sup
Q ball
x∈Q

(
1

μ(Q)

∫
Q

∣∣f − B∗
Q(f )

∣∣σ dμ

)1/σ

(3)

and a sharp maximal function adapted to our operators: for s > 0,

∀x ∈ X, M�
s (f )(x) := sup

Q ball
x∈Q

(
1

μ(Q)

∫
Q

∣∣B∗
Q(f )

∣∣s dμ

)1/s

.

The use of this sharp maximal function appeared in [8] and [6]. We recall the standard “Hardy–Littlewood” maximal
operator, defined by: for s > 0,

∀x ∈ X, MHL,s(f )(x) := sup
Q ball
x∈Q

(
1

μ(Q)

∫
Q

|f |s dμ

)1/s

.

We now come to the main result:

Theorem 3.2. Assume that for σ ∈ (β ′,∞] and p0 ∈ (σ ′, β] the maximal operator Mσ is bounded by MHL,p′
0
. Let T

be an Lp0 -bounded linearizable operator which is continuous from H 1
F,ato (or H 1

ato) into L1. Then for all p ∈ (σ ′,p0]
there exists a constant C = C(p) such that:

∀f ∈ Lp0 ∩ Lp,
∥∥T (f )

∥∥
Lp � C‖f ‖Lp .

Remark 3. (1) What is very interesting, is that we only use the fact that there is a constant C such that for all atom m

of H 1
ato,
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∥∥T (m)
∥∥

L1 � C.

This assumption is equivalent to the continuity from H 1
F,ato to L1 and is weaker than the continuity from H 1

ato to L1.

We do not require that T admits a continuous extension on the whole Hardy space H 1
ato, which seems to be a difficult

technical problem to be solved.
(2) We refer the reader to Definition V.1.20 of [7] for the concept of “linearizable” operators.

Proof. The proof is already written in details in [3] for p0 = β = 2 and in [2] in the general case using real interpola-
tion theory. We just want to recall the main arguments and deal only with a linear operator T . The assumption that T

is continuous from H 1
F,ato to L1 implies that∥∥M

�

β ′(T ∗f )
∥∥

L∞ � ‖f ‖L∞ .

We use T ∗ for the adjoint operator. Then using the above assumption and the Lp0 boundedness of T , we have∥∥M
�

β ′(T ∗f )
∥∥

L
p′

0,∞ �
∥∥MHL,p′

0
(T ∗f )

∥∥
L

p′
0,∞ � ‖f ‖

L
p′

0
.

Now using real interpolation for the sublinear operator M
�

β ′(T ∗), we get that for all p ∈ (1,p0)∥∥M
�

β ′(T ∗f )
∥∥

Lp′ � ‖f ‖
Lp′ . (4)

Then we use a “good lambda inequality” to compare the maximal functions MHL,β ′ and M
�

β ′ . Using Theorem 3.1
of [1], we also obtain

‖h‖Lq �
∥∥MHL,β ′(h)

∥∥
Lq �

∥∥M
�

β ′(h)
∥∥

Lq (5)

for all functions h ∈ Lq ∩ Lβ ′
and all exponent q < σ . Together (4) and (5) give us that T ∗ admits a continuous

extension on Lq for q ∈ (p′
0, σ ). The proof is completed by duality. �

Remark 4. We can obtain a stronger result characterizing the intermediate spaces with real interpolation theory
(see [2]). However these arguments seem to require a space of infinite measure μ(X) = ∞ and the continuous em-
bedding H 1

F,ato ↪→ L1.

Example 2. In the case of the Coifman–Weiss space, we have seen in Example 1, that H 1
CW = H 1

ato with a special
choice for the operators BQ and β = ∞. In this particular case, it is obvious to check that our maximal operator M∞
is bounded by MHL,1. We regain also the “classical result”: H 1

CW can be interpolated with all the Lebesgue spaces Lp

(with 1 < p � ∞) to find the intermediate Lebesgue spaces.

We finish by referring the reader to [3] for a criterion of H 1
F,ato-L1 boundedness, a detailed study of these abstract

Hardy spaces and to [2,3] for applications of these Hardy spaces and interpolation results.
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