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Abstract

Let E be an elliptic curve defined over Q, let Ed denote its dth quadratic twist, and rEd
:= rankEd(Q). We prove, that, for

any positive integer k there are pairwise non-isogenous elliptic curves E1, . . . ,Ek such that rE1
p

= · · · = rEk
p

= 0 for a positive
proportion of primes p. To cite this article: A. Dąbrowski, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la proportion de tordues de courbes elliptiques qui sont de rang 0. Soit E une courbe elliptique définie sur Q, Ed la
tordue quadratique de E par d, et rEd

:= rangEd(Q). On démontre qu’il existe, pour tout entier positif k, des courbes elliptiques
E1, . . . ,Ek , qui sont 2 à 2 non isogènes, et telles que rE1

p
= · · · = rEk

p
= 0 pour une famille de nombres premiers p de densité

positive. Pour citer cet article : A. Dąbrowski, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let E be an elliptic curve over Q given by the Weierstrass equation y2 = x3 + ax2 + bx + c (a, b, c ∈ Z). If d

is a squarefree integer, then we define the d th quadratic twist Ed of E to be the elliptic curve given by the equation
y2 = x3 + adx2 + bd2x + cd3. Let rEd

denote the rank of the Mordell–Weil group Ed(Q).
From the work of Waldspurger [15] (combined with the work of Kolyvagin [11], and of Wiles and others [1]) it

follows that rEd
= 0 for infinitely many squarefree d’s. It is believed [5] that a positive proportion of twists Ed have

rank zero. Such an expectation follows, under the Riemann hypothesis, from the work of Iwaniec and Sarnak [8].
Conditional results (in a more general situation) are also proved in [3]. Unconditional results are only known for a few
specific curves [9,10,14]. The best unconditional (but weaker) result in full generality is due to Ono and Skinner [12]:
|{|d| � X: rEd

= 0}| � X/ logX.
Hoffstein and Luo [6] proved that, for fixed E, there exist infinitely many odd squarefree d with the number of

prime factors no greater than 3 with rEd
= 0. Ono and Skinner [12] proved that, when E has conductor � 100, Ep or
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E−p has rank zero for a positive proportion of primes p. Dąbrowski and Wieczorek [4] proved (assuming there are
infinitely many pairs of twin prime numbers) that, for any positive integer k, there are pairwise non-isogenous curves
E1, . . . ,Ek such that rE1

p
= · · · = rEk

p
= 0 for a positive proportion of primes p.

Theorem 1. For any positive integer k there are pairwise non-isogenous elliptic curves E1, . . . ,Ek such that rE1
p

=
· · · = rEk

p
= 0 for a positive proportion of primes p.

The proof is based on the 2-descent method, applied to explicit families of elliptic curves, and uses the result of
Chen [2] (see also Remark (i)).

2. Proof of Theorem 1

For integers A, B , m satisfying 22m = A + B we consider the elliptic curve Em,A given by the equation y2 =
x(x + A)(x − B). Let E

′m,A be the elliptic curve given by the equation y2 = x3 − 2(A − B)x2 + 24mx. Consider the
two-isogeny φ : Em,A

r → E
′m,A
r , defined by φ((x, y)) = (y2/x2,−y(ABr2 + x2)/x2); let φ̂ denote the dual isogeny.

In the first part of this section, we compute the Selmer groups S(φ)(E
m,A
r /Q), and S(φ̂)(E

′m,A
r /Q) in a case AB is a

product of two or three different primes and r runs over the suitable set of primes of positive proportion. We use the
notations and results from chapter X of Silverman’s book [13]. Let

C
(r)
d (m,A): dy2 = d2 − 2rd(A − B)x2 + 24mr2x4,

C
′(r)
d (m,A): dy2 = d2 + 4rd(A − B)x2 − 16ABr2x4

be the principal homogeneous spaces under the actions of the elliptic curves previously defined. Let Σ(M) and Δ(M)

be the support of an integer M in the set of prime numbers and the set of divisors of M in Z respectively. Using [13,
Proposition 4.9, p. 302], we have the following identifications:

S(φ)
(
Em,A

r /Q
) � {

d ∈ Δ(2ABr): C
(r)
d (m,A)(Ql ) �= ∅ ∀l ∈ Σ(2ABr) ∪ {∞}},

S(φ̂)
(
E

′m,A
r /Q

) � {
d ∈ Δ(2ABr): C

′(r)
d (m,A)(Ql ) �= ∅ ∀l ∈ Σ(2ABr) ∪ {∞}}.

To check that C
(r)
d (m,A) has no Ql-rational point (x, y), we show that the number of terms in the equality dy2 =

d2 − 2rd(A − B)x2 + 24r r2x4 which have minimal l-adic valuation is at most two. If there is only one term, we are
done. If there are two terms, we show that the ratio of those terms is (after changing the sign if appropriate) not a
square modulo l (modulo 8, if l = 2).

Lemma 1. Let p and q be odd prime numbers such that 22m = p + q . If p ≡ 1(mod 4), then we have

S(φ)
(
E

m,p
r /Q

) � (0) and S(φ̂)
(
E

′m,p
r /Q

) � (Z/2Z)2

for primes r satisfying pr ≡ 3(mod 8) and (
q
r
) = −(

p
r
) = 1.

Proof. We have C
(r)
pk (m,p)(Qp) = ∅ for squarefree integers k, (k,p) = 1, as can be checked by examining the p-adic

valuations of both sides of the equation defining C
(r)
pk (m,p). Similarly, we have C

(r)
qk (m,p)(Qq) = ∅. Of course,

C
(r)
d (m,p)(R) = ∅ for d < 0. Consequently, we obtain S(φ)(E

m,p
r /Q) ⊂ 〈2, r〉 � (Z/2Z)2. Using the assumptions

p ≡ 1(mod 4) and pr ≡ 3(mod 8), we conclude that C
(r)
2k (m,p)(Q2) = ∅ for k ∈ {1, r}. On the other hand, ( r

p
) = −1

implies C
(r)
r (m,p)(Qp) = ∅.

Non-existence of dyadic points on C
′(r)
2k (m,p) (k odd) implies S(φ̂)(E

′m,p
r /Q) ⊂ 〈−1,p, q, r〉 � (Z/2Z)4. The sets

C
′(r)
−pr(m,p)(Q) and C

′(r)
qr (m,p)(Q) contain the point (1/2,0), hence 〈−pr, qr〉 ⊂ S(φ̂)(E

′m,p
r /Q). Using the assump-

tions r ≡ 3(mod 4) and (
pq
r

) = −1, we obtain C
′(r)
−1 (m,p)(Qr ) = ∅. Similarly, a closer examination of the situations,

using the assumptions of the lemma, enables one to conclude that C
′(r)
p (m,p)(Qr ) = ∅ and C

′(r)
r (m,p)(Q2) = ∅. The

assertion now follows. �
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Let III(E/Q) denote the Shafarevich–Tate group of an elliptic curve E over Q.

Lemma 2. Fix odd primes p, q1 and q2 satisfying 22m = p + q1q2.

(i) Consider the set of primes r ≡ 5(mod 8) satisfying (
p
r
) = −(

q1
r
) = −(

q2
r
) = 1. We have S(φ)(E

m,A
r /Q) � (0) and

S(φ̂)(E
′m,A
r /Q) � (Z/2Z)2, where A = q1q2 if p ≡ 1(mod 4) and A = p if p ≡ 3(mod 8).

(ii) If p ≡ 7(mod 8), then

dim2 S(φ)
(
E

m,q1q2
r /Q

) + dim2 S(φ̂)
(
E

′m,q1q2
r /Q

) − dim2 III
(
E

m,q1q2
r /Q

)[φ] − dim2 III
(
E

′m,q1q2
r /Q

)[φ̂] = 2

for a positive proportion of primes r (we abbreviate dim2 = dimF2 ).

Proof. (i) Assume p ≡ 1(mod 4). Following the same line as in the proof of lemma 1, we obtain S(φ)(E
m,q1q2
r /Q) ⊂

〈2, r〉 and 〈pr,−q1q2r〉 ⊂ S(φ̂)(E
′m,q1q2
r /Q) ⊂ 〈−1,p, q1q2, r〉. A closer examination of the situations, using the

assumptions of the lemma, leads to C
(r)
k (m,q1q2)(Q2) = ∅ (k ∈ {2, r}), C

′(r)
l (m,q1q2)(Q2) = ∅ (l ∈ {−1, r, q1q2}),

and C
′(r)
±qi

(m,q1q2)(Qr ) = ∅ (i = 1,2). The assertion now follows.

Similarly, we obtain S(φ)(E
m,p
r /Q) = {1} and S(φ̂)(E

′m,p
r /Q) = 〈−pr, q1q2r〉 if p ≡ 3(mod 8).

(ii) If q1 ≡ 3,5(mod 8), then

S(φ)
(
E

m,q1q2
r /Q

) = {1} and S(φ̂)
(
E

′m,q1q2
r /Q

) = 〈pr,−q1q2r〉
for primes r ≡ 7(mod 8) satisfying (

p
r
) = −(

q1q2
r

) = 1.

If q1 ≡ 1,7(mod 8), then S(φ)(E
m,q1q2
r /Q) = {1} and S(φ̂)(E

′m,q1q2/Q) = 〈pr,−q1q2r, kq1, kq2〉 (k = 1 or −1)

for primes r ≡ 5(mod 8) satisfying (
p
r
) = −(

q1q2
r

) = 1. One checks that C
′(r)
±qi

(m,q1q2)(Q) = ∅. Consequently, the

group W(E
′m,q1q2
r /Q) = E

m,q1q2
r (Q)/φ̂(E

′m,q1q2
r (Q)) (as the subgroup of S(φ̂)(E

′m,q1q2
r /Q) consisting of homoge-

neous spaces with rational point) equals 〈pr,−q1q2r〉. The proof now follows from the following exact sequence (see

[13], Theorem 4.2, p. 298): 0 → W(E
′m,q1q2
r /Q) → S(φ̂)(E

′m,q1q2
r /Q) → III(E

′m,q1q2
r /Q)[φ̂] → 0 (and its variant for

E
m,q1q2
r ). �

Proof of Theorem 1. We will apply the fundamental formula (compare [13], p. 314):

r
E

m,A
d

= dim2 S(φ)
(
E

m,A
d /Q

) + dim2 S(φ̂)
(
E

′m,A
d /Q

) − dim2 III
(
E

m,A
d /Q

)[φ] − dim2 III
(
E

′m,A
d /Q

)[φ̂] − 2.

Chen [2] showed that every sufficiently large even number is the sum of a prime and a natural number which has
at most two prime factors. We apply these results to the sequence 22m, m � m0. Theorem 1 follows from the fun-
damental formula, and (the proof of) Lemmata 1 and 2 combining with Dirichlet theorem on primes in arithmetic
progressions. �
Remarks. (i) Let us sketch the proof of Theorem 1 using Setzer–Neumann curves (and generalizations). Let
u2 + 64 = p or p1p2 (p,p1,p2 primes), where the sign of u is chosen so that u ≡ 1(mod 4). Consider the el-
liptic curves Eu : y2 = x3 + ux2 − 16x and E

′u: y2 = x3 − 2ux2 + x. Let φ :Eu
r → E

′u
r be the two-isogeny

defined by φ((x, y)) = (y2/x2,−(16r2 + x2)/x2). One can show, that dim2 S(φ)(Eu
r /Q) + dim2 S(φ̂)(E

′u
r /Q) −

dim2 III(Eu
r /Q)[φ] − dim2 III(E

′u
r /Q)[φ̂] = 2 for a positive proportion of primes r . To finish the proof of Theorem 1,

one applies the following result of Iwaniec [7]: there are infinitely many integers n such that n2 + 64 is the product of
at most two primes.

(ii) The method of proof of Theorem 1 leads to the following conditional result. Assume the parity conjecture
holds true. Then for any positive integer k there are pairwise non-isogenous elliptic curves E1, . . . ,Ek such that
rE1

p
= · · · = rEk

p
= 1 for a positive proportion of primes p.
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[4] A. Dąbrowski, M. Wieczorek, On the equation y2 = x(x − 2m)(x + q − 2m), J. Number Theory 124 (2007) 364–379.
[5] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, in: Lecture Notes in Math., vol. 751, Springer-Verlag, 1979, pp. 108–118.
[6] J. Hoffstein, W. Luo, Nonvanishing of L-series and the combinatorial sieve, Math. Res. Lett. 4 (1997) 435–444.
[7] H. Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978) 171–188.
[8] H. Iwaniec, P. Sarnak, The non-vanishing of central values of automorphic L-functions and Landau–Siegel zeros, Israel J. Math. 120 (2000)

155–177.
[9] K. James, L-series with non-zero central critical value, J. Amer. Math. Soc. 11 (1998) 635–641.

[10] W. Kohnen, On the proportion of quadratic twists of L-functions attached to cusp forms not vanishing at the central point, J. Reine Angew.
Math. 508 (1999) 179–187.

[11] V.A. Kolyvagin, Finiteness of E(Q) and III(E,Q) for a subclass of Weil curves, Izv. Acad. Nauk USSR 52 (1988) 522–540 (in Russian).
[12] K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 34 (1998) 651–660.
[13] J.H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1985.
[14] V. Vatsal, Rank-one twists of a certain elliptic curve, Math. Ann. 311 (1998) 791–794.
[15] J.L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981) 375–484.


