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Abstract

We prove that there are at most finitely many complex λ �= 0,1 such that two points on the Legendre elliptic curve Y 2 =
X(X − 1)(X − λ) with coordinates X = 2 and X = 3 both have finite order. This is a very special case of some well-known
conjectures on unlikely intersections with varying semiabelian varieties. To cite this article: D. Masser, U. Zannier, C. R. Acad.
Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Points de torsion et familles de courbes elliptiques. Comme cas très spécial de certaines conjectures générales sur l’intersection
d’une variété algébrique avec la réunion des sous-schémas de dimension fixée d’un schéma semi-abélien, nous montrons qu’il
n’existe qu’un nombre fini de λ ∈ C \ {0,1} tels que les quatre points de la courbe elliptique Y 2 = X(X − 1)(X − λ) avec X = 2
et X = 3 soient d’ordre fini. Pour citer cet article : D. Masser, U. Zannier, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Motivated by recent work on unlikely intersections, we consider here the following question. What can be said
about the complex numbers λ �= 0,1 such that the points

Pλ = (
2,

√
2(2 − λ)

)
, Qλ = (

3,
√

6(3 − λ)
)

(1)

both have finite order on the Legendre elliptic curve Eλ defined by Y 2 = X(X − 1)(X − λ)?
It is not difficult to see that there are infinitely many λ such that Pλ alone has finite order. Reducing if necessary to

Weierstrass form, we see that multiplication by n is given by sending X to An(X)
Bn(X)

for coprime An,Bn in Q[λ][X]. So
the order of Pλ divides n if and only if Bn(2) = 0. Now Bn(2) is a polynomial just in λ; for example we can normalize
to

B2(2) = λ − 2, B3(2) = (λ2 + 8λ − 16)2, B4(2) = λ2(λ − 2)(λ − 4)2(3λ − 4)2. (2)
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None of the Bn(2) can vanish identically, else Pλ would have finite order for every λ, which is false, for example with
λ = −6, because then 2Pλ = ( 25

16 ,− 165
64 ) which by Lutz–Nagell (see, for example, [4, p. 114]) cannot be torsion. So

for each n there is λ (even algebraic) such that Pλ has order dividing n. For example with λ = 4 we get order 4. And
taking n prime, we get a point of exact order n.

However, the resulting values of λ are somewhat sparse. In one sense this follows from a general result of the first
author [6]; but in fact in this case a stronger conclusion can be deduced from a result of Silverman [12]. Namely, the
absolute Weil height h(λ) (see below) is bounded above.

A similar argument with Bn(3) and λ = −21 with 2Qλ = ( 25
16 ,− 285

64 ) shows that there are infinitely many λ such
that Qλ alone has finite order, with the same conclusions for the height. Thus if the two points are in some sense
independent of each other, which looks plausible, then we might expect the intersection of the two sparse sets to be
especially sparse and perhaps even finite. This is indeed so.

Theorem. There are at most finitely many complex numbers λ �= 0,1 such that the points Pλ,Qλ have finite order
on Eλ.

The above question did not arise from nowhere. In 1999 Bombieri and the present authors [1] studied problems on
algebraic curves in powers of the multiplicative group Gm. In 2002 Zilber [13] independently published his conjectures
on intersections with tori, which turned out to be generalizations of questions formulated in [1], not only from curves
to varieties but also in the context of semiabelian varieties. There the semiabelian varieties were considered fixed. In
2005 Pink [11] independently formulated even more general versions, in particular allowing the semiabelian varieties
to vary. The result above is a special example in the simplest unsolved case of a curve in Eλ × Eλ.

Recently Pila and the second author [10] found a new proof of some classical results of Manin–Mumford type for
a fixed Abelian variety A. In order to handle the torsion points, they observe that these map to Qs (s = 2 dimA) under
some choice of the Abelian logarithm. Also, a fixed algebraic subvariety W of A maps to some fixed subvariety Z

of Rs which is usually no longer algebraic but only analytic. Now rational points on analytic or subanalytic sets have
been intensively studied in the last few years, starting with Bombieri and Pila [2] for a curve and most recently Pila
and Wilkie [9] for arbitrary dimension. Their results say that the number of such points in 1

n
Zs is usually of order at

most nε as n tends to infinity. However there can be obstacles in the shape of semialgebraic subsets of Z.
Anyway, an upper bound for n can be found by noting that a point of order n on W , say of degree d , carries many

of its conjugates with it, at least when A and W are defined over a number field. A result of the first author [5], proved
using techniques from transcendence theory, states that d has order at least nδ for some fixed δ > 0 depending only
on A. This leads to the appropriate restrictions on the torsion points.

Our own proof follows this general strategy, with A = Eλ × Eλ and the torsion point (Pλ,Qλ). The fact that A is
now varying makes hardly any difference to the first part of the argument, and we still end up on a subanalytic set.
Now it is at worst a surface and so an earlier result of Pila [8] suffices to get the nε . Apart from the possibility that
Pλ or Qλ is generically torsion (already excluded above), it turns out that the only possible obstacle is an identity
qPλ = pQλ for fixed non-zero integers p,q; and this too can be excluded.

To get the nδ it suffices to have some version of [5] for varying elliptic curves. The main result of [7] is almost
enough, except that there is no explicit dependence on the degree of the ground field. This was supplied by David [3],
whose result is particularly sharp in several respects. Of course it involves the height of the elliptic curve, which
however can be controlled with Silverman’s Theorem quoted above.

Prompted by a remark of J-P. Serre, we point out that there is nothing special about our choice of X-coordinates
2 and 3. We even expect that similar arguments will allow the Theorem to be generalized to any independent points
Pλ,Qλ on Eλ defined over an algebraic closure of Q(λ). Perhaps specialization techniques will also allow C(λ) here.
Note that the analogous results over a constant elliptic curve are easy consequences of Manin–Mumford itself.

2. Sketch of proof

First we record the basic result of Pila [8] that we use.
For any subset S of Rs we define Str as what remains of S after removing all positive-dimensional semialgebraic

sets in Rs contained in S. Certainly Str lies inside the set Strans defined in [8, p. 207].



D. Masser, U. Zannier / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 491–494 493
Let m be a positive integer. We define a naive-m-subanalytic subset of Rs as a finite union of θ(D), where each D

is a closed disc in Rm and each θ is real analytic from an open neighbourhood of D to Rs . The following result can
be deduced from [8].

Lemma 1. Suppose S is a naive-2-subanalytic subset of Rs . Then for any ε > 0 there is a c = c(S, ε) with the
following property. For each positive integer n there are at most cnε rational points of Str in 1

n
Zs .

We will construct our own naive-2-subanalytic subset S by means of the following functions. Let F( 1
2 , 1

2 ,1;λ) be
a hypergeometric function. We define

f = f (λ) = πF

(
1

2
,

1

2
,1;λ

)
, g = g(λ) = π iF

(
1

2
,

1

2
,1;1 − λ

)
;

these are certainly analytic in the open set Λ defined by |λ| < 1, |1 − λ| < 1. They are basis elements of a period
lattice of Eλ (see, for example, [4, p. 179]). Then using the standard determination of

√
λ − X we can define

z = z(λ) = 2

∞∫
2

dX√
X(X − 1)(X − λ)

, w = w(λ) = 2

∞∫
3

dX√
X(X − 1)(X − λ)

,

which are analytic off the real intervals [2,∞), [3,∞) respectively, and so for example on Λ. These are elliptic
logarithms of Pλ,Qλ. It will turn out that Str = S, and to prove this we have to know that the functions f,g, z,w are
homogeneously algebraically independent on Λ. This in turn is a simple application of monodromy.

Our S will consist of the following θ(D) together with certain analytic continuations. It can be shown that there
are unique real x = x(λ), y = y(λ),u = u(λ), v = v(λ) with

z = xf + yg, w = uf + vg.

We can therefore define θ = (x, y,u, v) on Λ by this formula, with a small closed disc D inside Λ. As mentioned
above, we have Str = S.

We use the standard absolute Weil height

h(λ) = 1

[Q(λ) : Q]
∑

v

log max
{
1, |λ|v

}

of an algebraic number λ, where v runs over a suitably normalized set of valuations. The upper bound for the order of
torsion follows at once from the following result, deduced from [3]:

Lemma 2. There is an absolute constant c with the following property. Suppose for some λ �= 0,1 that the point Pλ

or the point Qλ has finite order n. Then λ is algebraic, and

n � c
[
Q(λ) : Q

]2(1 + h(λ)
)
.

In view of the next result, deduced from [12], we can eliminate the height dependence in Lemma 2.

Lemma 3. There is an absolute constant c with the following property. Suppose for some λ �= 0,1 that the point Pλ

or the point Qλ has finite order. Then h(λ) � c.

To prove our Theorem we fix any positive ε < 1
4 . We use c, c1, c2, c3 for positive absolute constants. We have to

show that there are at most finitely many λ �= 0,1 such that Pλ and Qλ both have finite order on Eλ. By Lemma 2
each value is algebraic, say of degree d , and thanks to Lemma 3 and the Northcott property it will suffice to prove
d � c. We will actually argue with a single value of λ and its d conjugates.

Next, Lemma 2 together with Lemma 3 shows (by multiplying together the two orders) that there is a positive
integer n � c1d

4 such that nPλ = nQλ = 0.
Suppose that we are lucky and λ has at least d

2 conjugates μ in D. Since also nPμ = nQμ = 0 on Eμ the points
θ(μ) lie in Q4 and even in 1 Z4.
n



494 D. Masser, U. Zannier / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 491–494
By Lemma 1 the number of such values θ(μ) is at most c2n
ε � c3d

4ε . We can without difficulty deduce the same
estimate for the number of μ. But this is at least d

2 ; and d � c follows.
If we are not so lucky with the conjugates, then we have to work with one of the analytic continuations of θ(D).

From Lemma 3 it turns out that the number of these can be bounded by an absolute constant; and this allows the
argument to proceed in the same way.
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