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Abstract

It is now well-known that one can reconstruct sparse or compressible signals accurately from a very limited number of mea-
surements, possibly contaminated with noise. This technique known as “compressed sensing” or “compressive sampling” relies on
properties of the sensing matrix such as the restricted isometry property. In this Note, we establish new results about the accuracy
of the reconstruction from undersampled measurements which improve on earlier estimates, and have the advantage of being more
elegant. To cite this article: E.J. Candès, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La propriété d’isométrie restreinte et ses conséquences pour le compressed sensing. Il est maintenant bien connu que
l’on peut reconstruire des signaux compressibles de manière précise à partir d’un nombre étonnamment petit de mesures, peut-
être même bruitées. Cette technique appelée le “compressed sensing” ou “compressive sampling” utilise des propriétés de la
matrice d’échantillonage comme la propriété d’isométrie restreinte. Dans cette Note, nous présentons de nouveaux résultats sur la
reconstruction de signaux à partir de données incomplètes qui améliorent des travaux précedents et qui, en outre, ont l’avantage
d’être plus élégants. Pour citer cet article : E.J. Candès, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Suppose that we observe

y = Φx, (1)

where x ∈ R
n is an object we wish to reconstruct, y ∈ R

m are available measurements, and Φ is a known m × n

matrix. Here, we are interested in the underdetermined case with fewer equations than unknowns, i.e. m < n, and ask
whether it is possible to reconstruct x with good accuracy. As such, the problem is of course ill-posed but suppose now
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that x is known to be sparse or nearly sparse in the sense that it depends on a smaller number of unknown parameters.
This premise radically changes the problem, making the search for solutions feasible. In fact, it has been shown that
the solution x� to

min
x̃∈Rn

‖x̃‖�1 subject to Φx̃ = y, (2)

recovers x exactly provided that 1) x is sufficiently sparse and 2) the matrix Φ obeys a condition known as the
restricted isometry property introduced below [2]. The purpose of this Note is to introduce sharper and perhaps more
elegant results in this direction.

To state our main results, we first recall the concept of restricted isometry constants:

Definition 1.1. For each integer s = 1,2, . . . , define the isometry constant δs of a matrix Φ as the smallest number
such that

(1 − δs)‖x‖2
�2

� ‖Φx‖2
�2

� (1 + δs)‖x‖2
�2

(3)

holds for all s-sparse vectors. A vector is said to be s-sparse if it has at most s nonzero entries.

Our claims concern not only sparse vectors but all vectors x ∈ R
n and to measure the quality of the reconstruction,

we will compare the reconstruction x� with the best sparse approximation one could obtain if one knew exactly the
locations and amplitudes of the s-largest entries of x; here and below, we denote this approximation by xs , i.e. the
vector x with all but the s-largest entries set to zero.

Theorem 1.2 (Noiseless recovery). Assume that δ2s <
√

2 − 1. Then the solution x� to (2) obeys

‖x� − x‖�1 � C0‖x − xs‖�1 (4)

and

‖x� − x‖�2 � C0s
−1/2‖x − xs‖�1 (5)

for some constant C0 given explicitly below. In particular, if x is s-sparse, the recovery is exact.

Focusing on the case where x is sparse, one would in fact want to find the sparsest solution of Φx̃ = y and solve

min
x̃∈Rn

‖x̃‖�0 subject to Φx̃ = y.

This is a hard combinatorial problem. However, Theorem 1.2 asserts that the �0 and �1 problems are in fact formally
equivalent in the following sense:

– if δ2s < 1, the �0 problem has a unique s-sparse solution;
– if δ2s <

√
2 − 1, the solution to the �1 problem is that of the �0 problem. In other words, the convex relaxation is

exact.

Indeed, if δ2s < 1, any s-sparse solution is unique and we omit the standard details. In the other direction, suppose
that δ2s = 1. Then 2s columns of Φ may be linearly dependent in which case there is a 2s-sparse vector h obeying
Φh = 0. One can then decompose h as x − x′ where both x and x′ are s-sparse. This gives Φx = Φx′ which means
that one cannot reconstruct all s-sparse vectors by any method whatsoever.

Our goal now is to extend the analysis to a more applicable situation in which the measurements are corrupted with
noise. We observe

y = Φx + z, (6)

where z is an unknown noise term. In this context, we propose reconstructing x as the solution to the convex opti-
mization problem

min
x̃∈Rn

‖x̃‖�1 subject to ‖y − Φx̃‖�2 � ε, (7)

where ε is an upper bound on the size of the noisy contribution. Our next statement shows that one can stably recon-
struct x under the same hypotheses as in Theorem 1.2.
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Theorem 1.3 (Noisy recovery). Assume that δ2s <
√

2 − 1 and ‖z‖�2 � ε. Then the solution to (7) obeys

‖x� − x‖�2 � C0s
−1/2‖x − xs‖�1 + C1ε (8)

with the same constant C0 as before and some C1 given explicitly below.

We emphasize that the constants C0 and C1 are rather small. For instance, when δ2s = 0.2, we have that the error
in (8) is less than 4.2s−1/2‖x − xs‖�1 + 8.5ε.

2. Proofs

Lemma 2.1. We have∣∣〈Φx,Φx′〉∣∣ � δs+s′‖x‖�2‖x′‖�2

for all x, x′ supported on disjoint subsets T ,T ′ ⊆ {1, . . . , n} with |T | � s, |T ′| � s′.

Proof. This is a very simple application of the parallelogram identity. Suppose x and x′ are unit vectors with disjoint
support as above. Then

2(1 − δs+s′) � ‖Φx ± Φx′‖2
�2

� 2(1 + δs+s′).

Now the parallelogram identity asserts that

∣∣〈Φx,Φx′〉∣∣ = 1

4

∣∣‖Φx + Φx′‖2
�2

− ‖Φx − Φx′‖2
�2

∣∣ � δs+s′ ,

which concludes the proof. �
The proofs of Theorems 1.2 and 1.3 parallel that in [1]. We begin by proving the latter which, in turn, gives the

first part of the former, namely, (5). A modification of the argument then gives the second part, i.e. (4). Throughout
the paper, xT is the vector equal to x on an index set T and zero elsewhere.

To prove Theorem 1.3, we start with the basic observation∥∥Φ(x� − x)
∥∥

�2
� ‖Φx� − y‖�2 + ‖y − Φx‖�2 � 2ε, (9)

which follows from the triangle inequality and the fact that x is feasible for the problem (7). Set x� = x + h and
decompose h into a sum of vectors hT0 , hT1 , hT2 , . . . , each of sparsity at most s. Here, T0 corresponds to the locations
of the s largest coefficients of x; T1 to the locations of the s largest coefficients of hT c

0
; T2 to the locations of the next

s largest coefficients of hT c
0

, and so on. The proof proceeds in two steps: the first shows that the size of h outside of
T0 ∪ T1 is essentially bounded by that of h on T0 ∪ T1. The second shows that ‖hT0∪T1‖�2 is appropriately small.

For the first step, we note that for each j � 2,

‖hTj
‖�2 � s1/2‖hTj

‖�∞ � s−1/2‖hTj−1‖�1

and thus∑
j�2

‖hTj
‖�2 � s−1/2(‖hT1‖�1 + ‖hT2‖�1 + · · ·) � s−1/2‖hT c

0
‖�1 . (10)

In particular, this gives the useful estimate

‖h(T0∪T1)
c‖�2 =

∥∥∥∥
∑
j�2

hTj

∥∥∥∥
�2

�
∑
j�2

‖hTj
‖�2 � s−1/2‖hT c

0
‖�1 . (11)

The key point is that ‖hT c
0
‖�1 cannot be very large for ‖x + h‖�1 is minimum. Indeed,

‖x‖�1 � ‖x + h‖�1 =
∑
i∈T0

|xi + hi | +
∑
i∈T c

|xi + hi | � ‖xT0‖�1 − ‖hT0‖�1 + ‖hT c
0
‖�1 − ‖xT c

0
‖�1
0
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(‖xT c
0
‖�1 = ‖x − xs‖�1 by definition), which gives

‖hT c
0
‖�1 � ‖hT0‖�1 + 2‖xT c

0
‖�1 . (12)

Applying (11), then (12) and the Cauchy–Schwarz inequality to bound ‖hT0‖�1 by s1/2‖hT0‖�2 gives

‖h(T0∪T1)
c‖�2 � ‖hT0‖�2 + 2e0, e0 ≡ s−1/2‖x − xs‖�1 . (13)

The second step bounds ‖hT0∪T1‖�2 . To do this, observe that ΦhT0∪T1 = Φh − ∑
j�2 ΦhTj

and, therefore,

‖ΦhT0∪T1‖2
�2

= 〈ΦhT0∪T1,Φh〉 −
〈
ΦhT0∪T1,

∑
j�2

ΦhTj

〉
.

It follows from (9) and the restricted isometry property that∣∣〈ΦhT0∪T1,Φh〉∣∣ � ‖ΦhT0∪T1‖�2‖Φh‖�2 � 2ε
√

1 + δ2s‖hT0∪T1‖�2 .

Moreover, it follows from Lemma 2.1 that |〈ΦhT0 ,ΦhTj
〉| � δ2s‖hT0‖�2‖hTj

‖�2 and likewise for T1 in place of T0.

Since ‖hT0‖�2 + ‖hT1‖�2 �
√

2‖hT0∪T1‖�2 for T0 and T1 are disjoint,

(1 − δ2s)‖hT0∪T1‖2
�2

� ‖ΦhT0∪T1‖2
�2

� ‖hT0∪T1‖�2

(
2ε

√
1 + δ2s + √

2δ2s

∑
j�2

‖hTj
‖�2

)
.

Therefore, it follows from (10) that

‖hT0∪T1‖�2 � αε + ρs−1/2‖hT c
0
‖�1, α ≡ 2

√
1 + δ2s

1 − δ2s

, ρ ≡
√

2δ2s

1 − δ2s

. (14)

We now conclude from this last inequality and (12) that

‖hT0∪T1‖�2 � αε + ρ‖hT0∪T1‖�2 + 2ρe0 ⇒ ‖hT0∪T1‖�2 � (1 − ρ)−1(αε + 2ρe0).

And finally,

‖h‖�2 � ‖hT0∪T1‖�2 + ‖h(T0∪T1)
c‖�2 � 2‖h(T0∪T1)‖�2 + 2e0 � 2(1 − ρ)−1(αε + (1 + ρ)e0

)
,

which is what we needed to show.
In the course of the proof, we established a useful fact:

Lemma 2.2. Let h be any vector in the nullspace of Φ and let T0 be any set of cardinality s. Then

‖hT0‖�1 � ρ‖hT c
0
‖�1, ρ = √

2δ2s(1 − δ2s)
−1. (15)

Indeed, this follows from ‖hT0‖�1 � s1/2‖hT0‖�2 � s1/2‖hT0∪T1‖�2 and (14) with ε = 0.
To derive the last inequality (4), we use (12) and (15) to obtain

‖hT c
0
‖�1 � ρ‖hT c

0
‖�1 + 2‖xT c

0
‖�1 ⇒ ‖hT c

0
‖�1 � 2(1 − ρ)−1‖xT c

0
‖�1 .

Therefore, in the noiseless case, h = x∗ − x obeys

‖h‖�1 = ‖hT0‖�1 + ‖hT c
0
‖�1 � 2(1 + ρ)(1 − ρ)−1‖xT c

0
‖�1,

which is what we wanted.
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