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Abstract

In this Note, for a continuous semimartingale local time Lx
t , we establish the integral

∫ ∞
−∞ g(x)dLx

t as a rough path integral
for any finite q-variation function g (2 � q < 3) by using Lyons’ rough path integration. We therefore obtain the Tanaka–Meyer
formula for a continuous function f if ∇−f exists and is of finite q-variation, 2 � q < 3. The case when 1 � q < 2 was established
by Feng and Zhao [C.R. Feng, H.Z. Zhao, Two-parameter p,q-variation path and integration of local times, Potential Analysis 25
(2006) 165–204] using the Young integral. To cite this article: C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Intégrale curviligne non régulière du temps local. Dans cette Note, pour un temps local d’une semi-martingale continue,
nous définissons l’intégrale

∫ ∞
−∞ g(x)dLx

t pour toute fonction g de q-variation finie (2 � q < 3) en utilisant l’intégrale de Lyons
pour des chemins non-réguliers. Nous obtenons alors la formule de Tanaka–Meyer pour une fonction continue f lorsque ∇−f

existe et est de q-variation finie avec 2 � q < 3. Le cas correspondant à 1 � q < 2 utilise l’intégrale de Young (voir Feng et Zhao
[C.R. Feng, H.Z. Zhao, Two-parameter p,q-variation path and integration of local times, Potential Analysis 25 (2006) 165–204.]).
Pour citer cet article : C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Consider a continuous semimartingale Xt = Mt +Vt , where Mt is a continuous local martingale and Vt is a contin-
uous process with finite variation. In [1], Lemma 2.1 says that the local time Lx

t of Xt is of bounded p-variation in x for
any t � 0 a.s. for any p > 2. So in Theorem 2.2, we gave a new condition for the Tanaka–Meyer formula and the inte-
gral

∫ ∞
−∞ ∇−f (x)dxL

x
t as a Young integral, when ∇−f (x) is of bounded q-variation (1 � q < 2). But what about the

case q � 2? Let us first try to define the integral
∫ ∞
−∞ g(x)dxL

x
t pathwise for a continuous function g(x) with bounded

q-variation (2 � q < 3); we also take 2 < p < 3. We still decompose the local time Lx
t = L̃x

t +∑
k L̂

x∗
k

t 1{x∗
k �x}, where

L̂x
t := Lx

t − Lx−
t . Here L̃x

t is continuous in x, and x∗
k , k = 1,2, . . . , are the countable discontinuous points of Lx

t .

From Lemma 2.2 in [1], we know that h(t, x) := ∑
k L̂

x∗
k

t 1{x∗
k �x} is of bounded variation in x for each t . So the key
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point is to define
∫ ∞
−∞ g(x)dxL̃

x
t pathwise for continuous g(x) with bounded q-variation (2 � q < 3). For this, we

will use Lyons’ rough path theory, see [3] and also [2].
Let [x′, x′′] be any interval in R. From the proof of Lemma 2.1 in [1], for any p � 2, we know that there exists

a constant c > 0 such that E|L̃b
t − L̃a

t |p � c|b − a|p/2, i.e. L̃x
t satisfies the Hölder condition in [3] with exponent 1

2 .
Denote by w a control of g(x). Then |g(b) − g(a)|q � w(a,b), for any (a, b) ∈ Δ := {(a, b): x′ � a < b � x′′}. It is
obvious that w1(a, b) := w(a,b) + (b − a) is also a control of g. Set h = 1

q
. It is trivial to see that, for any θ > q (so

hθ > 1), |g(b)− g(a)|θ � w1(a, b)hθ , for any (a, b) ∈ Δ. Denote Zx = (L̃x
t , g(x)). Then we can see that Zx satisfies,

for such h = 1
q

, and any θ > q ,

E|Zb − Za|θ � cw1(a, b)hθ for any (a, b) ∈ Δ, (1)

for some constant c > 0. Set w1(x) := w1(x
′, x), and for any m ∈ N , Dm := {x′ = xm

0 < xm
1 < · · · < xm

2m = x′′} a
partition of [x′, x′′] such that w1(x

m
l ) − w1(x

m
l−1) = 1

2m w1(x
′, x′′). It is obvious that xm

l − xm
l−1 � 1

2m w1(x
′, x′′). Now

define a continuous and bounded variation path Z(m) by:

Z(m)x := Zxm
l−1

+ w1(x) − w1(x
m
l−1)

w1(x
m
l ) − w1(x

m
l−1)

Δm
l Z for xm

l−1 � x < xm
l , (2)

where l = 1, . . . ,2m, and Δm
l Z = Zxm

l
− Zxm

l−1
. The corresponding smooth rough path Z(m) is built by taking its

iterated path integrals, i.e. for any (a, b) ∈ Δ,

Z(m)
j
a,b =

∫
a<x1<···<xj <b

dZ(m)x1 ⊗ · · · ⊗ dZ(m)xj
. (3)

Recall that the θ -variation metric dθ on C0,θ (Δ,T ([θ])(R2)) is defined by [3]:

dθ (Z,Y) = max
1�i�[θ]

di,θ

(
Zi ,Yi

) = max
1�i�[θ]

sup
D[x′,x′′]

(∑
l

|Zi
xl−1,xl

− Yi
xl−1,xl

|θ/i

)i/θ

.

In the following, we will show that {Z(m)}m∈N converges to a geometric rough path Z in the θ -variation topology
when 2 � q < 3, in which Z1

a,b = Zb − Za . We call Z the canonical geometric rough path associated with Z.

About the first level path Z(m)1
a,b , the method and results are similar to those in Chapter 4 in [3]. We can prove

supm supD

∑
l |Z(m)1

xl−1,xl
|θ < ∞ a.s. and,

Theorem 1. Assume q � 1. Let θ > q . For the continuous process Zx = (L̃x
t , g(x)) satisfying (1), we have

∞∑
m=1

sup
D

(∑
l

∣∣Z(m)1
xl−1,xl

− Z1
xl−1,xl

∣∣θ)1/θ

< ∞ a.s. (4)

In particular, (Z(m)1
a,b) converges to (Z1

a,b) in the θ -variation distance a.s. for any (a, b) ∈ Δ.

We next consider the second level path Z(m)2
a,b . As in [3], we can also see that, if m � n, Z(m)2

xn
k−1,xn

k
=

22(m−n)−1(Δm
l Z)⊗2, where l is chosen such that xm

l−1 � xn
k−1 < xn

k � xm
l , and if m > n,

Z(m)2
xn
k−1,xn

k
= 1

2
Δn

kZ ⊗ Δn
kZ + 1

2

2m−nk∑
r,l=2m−n(k−1)+1

r<l

(
Δm

r Z ⊗ Δm
l Z − Δm

l Z ⊗ Δm
r Z

)
. (5)

Similar to the proof of Proposition 4.3.3 in [3], we have:

Proposition 2. Assume q � 2. Let θ > q . Then for m � n,

2n∑
E

∣∣Z(m + 1)2
xn
k−1,x

n
k

− Z(m)2
xn
k−1,x

n
k

∣∣θ/2 � C

(
1

2n+m

)(θh−1)/2

, (6)

k=1
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where C depends on θ , h(:= 1
q
), w1(x

′, x′′), and c in (1).

For the case when m > n, we have the following key estimate:

Proposition 3. Assume 2 � q < 4. Let q < θ < 4. Then for m > n, we have that

E
∣∣Z(m + 1)2

xn
k−1,x

n
k

− Z(m)2
xn
k−1,x

n
k

∣∣θ/2 � C

[(
1

2n

)θ/4( 1

2m

) 1
2 hθ

+
(

1

2n

)θ/2( 1

2m

) 1
2 hθ− 1

8 θ ]
, (7)

where C is a generic constant and also depends on θ , h(:= 1
q
), w1(x

′, x′′), and c in (1).

The proof of the proposition is based on (5) and the following estimate (8). To see (8), first by using Tanaka’s

formula (cf. [4] and [5]) and
∑

x∗
k �x L̂

x∗
k

t = ∫ t

0 1{X(s)�x} dVs = Vt − V0 − ∫ t

0 1{X(s)>x} dVs , we have that

L̃x
t = (Xt − x)+ − (X0 − x)+ −

t∫
0

1{Xs>x} dMs − (Vt − V0) := ϕt (x) −
t∫

0

1{Xs>x} dMs − (Vt − V0).

Now by using the following estimates in the proof of Lemma 2.1 in [1]: for any γ � 1 and ai < ai+1, |ϕt (ai+1) −
ϕt (ai)|γ � 2γ (ai+1 − ai)

γ , E| ∫ t

0 1{ai<Xs�ai+1} dMs |γ � c(ai+1 − ai)
γ /2, we have that

E
[
Δm+1

2r−1L̃
x
t Δ

m+1
2l−1L̃

x
t

]
� C

[(
1

2m+1

)2

w1(x
′, x′′)2 + 2

(
1

2m+1

)3/2

w1(x
′, x′′)3/2

]

+ E

∣∣∣∣∣
t∫

0

1{xm+1
2r−2<Xs�xm+1

2r−1}1{xm+1
2l−2<Xs�xm+1

2l−1} d〈M〉s
∣∣∣∣∣

�

⎧⎪⎪⎨
⎪⎪⎩

C

(
1

2m+1

)3/2

, if r 
= l,

C
1

2m+1
, if r = l.

(8)

Here C is a generic constant and also depends on w1(x
′, x′′).

From the estimations of Propositions 2, 3 and Proposition 4.1.2 in [3], we obtain:

Theorem 4. Assume 2 � q < 4. Let q < θ < 4. Then for the continuous process Zx = (L̃x
t , g(x)) satisfying (1), there

exists a unique Zi on Δ taking values in (R2)⊗i (i = 1,2) such that

2∑
i=1

sup
D

(∑
l

∣∣Z(m)ixl−1,xl
− Zi

xl−1,xl

∣∣θ/i
)i/θ

→ 0,

both almost surely and in L1(Ω,F ,P ) as m → ∞. In particular, when 2 � q < 3, Z = (1,Z1,Z2) is the canonical
geometric rough path associated with Z.. Moreover, Z1

a,b = Zb − Za .

In the following, we will only consider the case that 2 � q < 3 and take θ ∈ (q,3). From Chen’s identity, it is easy
to know that for any (a, b) ∈ Δ, Z2

a,b = limm(D[a,b])→0
∑r−1

i=0 (Z2
xi ,xi+1

+ Z1
a,xi

⊗ Z1
xi ,xi+1

). So there exists:

lim
m(D[a,b])→0

r−1∑
i=0

(
(Z2

xi ,xi+1
)2,1 + g(xi)(L̃

xi+1
t − L̃

xi
t )

)

= lim
m(D[a,b])→0

r−1∑
i=0

(
(Z2

xi ,xi+1
)2,1 + (

g(xi) − g(a)
)
(L̃

xi+1
t − L̃

xi
t )

) + g(a)(L̃b
t − L̃a

t )

= (Z2
a,b)2,1 + g(a)(L̃b

t − L̃a
t ). (9)
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Denote this limit by
∫ b

a
g(x)dL̃x

t . Here (Z2
a,b)2,1 is the lower-left element of the 2 × 2 matrix Z2

a,b .

Let Zj (x) := (L̃x
t , gj (x)), where gj (·) is of bounded q-variation uniformly in j for 2 � q < 3, and when j → ∞,

gj (x) → g(x) for all x ∈ R. Repeating the above argument, for each j , we can find the canonical geometric rough

path Zj = (1,Z1
j ,Z2

j ) associated with Zj , the integral
∫ b

a
gj (x)dL̃x

t = ((Zj )
2
a,b)2,1 +gj (a)(L̃b

t − L̃a
t ), and the smooth

rough path Zj (m) = (1,Zj (m)1,Zj (m)2). Actually, (Zj )
1
a,b → Z1

a,b in the sense of the uniform topology, and also in

the sense of the θ -variation topology. As for (Zj )
2
a,b , we can easily see that

d2,θ

(
(Zj )

2,Z2) � d2,θ

(
(Zj )

2,
(
Zj (m)

)2) + d2,θ

((
Zj (m)

)2
,Z(m)2) + d2,θ

(
Z(m)2,Z2). (10)

From Theorem 4, we know that d2,θ (Z(m)2,Z2) → 0 as m → ∞. Moreover, it is not difficult to see from the proofs
of Propositions 2, 3, and Theorem 4, that d2,θ ((Zj )

2, (Zj (m))2) → 0 as m → ∞ uniformly in j . It is also easy to
prove that, for any fixed m, d2,θ ((Zj (m))2,Z(m)2) → 0 as j → ∞. Hence it follows from a standard argument that
d2,θ ((Zj )

2,Z2) → 0 as j → ∞. This implies that (Zj )
2
a,b → Z2

a,b as j → ∞. Then by (9) and the definition of∫ b

a
gj (x)dL̃x

t , we know that
∫ b

a
gj (x)dL̃x

t → ∫ b

a
g(x)dL̃x

t as j → ∞. Note now that the local time Lx
t has a compact

support in x a.s. So it is easy to see from taking [x′, x′′] covering the support of Lx
t that the above construction of the

integrals and the convergence can work for the integrals on R. Therefore we have:

Proposition 5. Let Zj (x) := (L̃x
t , gj (x)), Z(x) := (L̃x

t , g(x)), where gj (·), g(·) are of bounded q-variation uniformly
in j , 2 � q < 3. Assume gj (x) → g(x) as j → ∞ for all x ∈ R. Then as j → ∞, Zj (·) → Z(·) a.s. in the θ -variation
distance. Moreover, as j → ∞,

∫ ∞
−∞ gj (x)dL̃x

t → ∫ ∞
−∞ g(x)dL̃x

t a.s.

For the jump part h(t, x) of the local time, from Lebesgue’s dominated convergence theorem,
∫ ∞
−∞ gj (x)dh(t, x) →∫ ∞

−∞ g(x)dh(t, x), as j → ∞. So we can get
∫ ∞
−∞ gj (x)dLx

t → ∫ ∞
−∞ g(x)dLx

t , as j → ∞. Note that we can choose

smooth gj such that gj (x) → g(x) as j → ∞ for each x. In this case, the rough path integral
∫ ∞
−∞ gj (x)dL̃x

t agrees

with the Riemann integral and converges to the rough path integral
∫ ∞
−∞ g(x)dL̃x

t . If g(x) has finite discontinuities,
we can treat it easily by considering the integral piece by piece. Finally, we deduce an extension of the Tanaka–Meyer
formula by a smoothing procedure.

Theorem 6. Let X = (Xt )t�0 be a continuous semimartingale and f : R → R be an absolutely continuous function
and have left derivative ∇−f . Assume that, ∇−f is left continuous with finite discontinuities, locally bounded, and is
of bounded q-variation, where 1 � q < 3. Then

∫ ∞
−∞ ∇−f (x)dxL

x
t has a modification which is continuous in t such

that P-a.s.

f (Xt ) = f (X0) +
t∫

0

∇−f (Xs)dXs −
∞∫

−∞
∇−f (x)dxL

x
t , 0 � t < ∞. (11)

Here the integral
∫ ∞
−∞ ∇−f (x)dxL

x
t is a Lebesgue–Stieltjes integral when q = 1, a Young integral when 1 < q < 2,

and a Lyons’ rough path integral when 2 � q < 3, respectively.

Remark 1. Although
∫ ∞
−∞ ∇−f (x)dxL

x
t has a continuous version, it is not clear whether or not Z(t) in the rough

path space (Ωθ , dθ ) has a version which is continuous in t in the metric dθ .
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