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Abstract

In this Note, for a continuous semimartingale local time L}, we establish the integral ffooo g(x)dL7} as a rough path integral
for any finite g-variation function g (2 < g < 3) by using Lyons’ rough path integration. We therefore obtain the Tanaka—Meyer
formula for a continuous function f if V™ f exists and is of finite g-variation, 2 < ¢ < 3. The case when 1 < g < 2 was established
by Feng and Zhao [C.R. Feng, H.Z. Zhao, Two-parameter p, g-variation path and integration of local times, Potential Analysis 25
(2006) 165-204] using the Young integral. To cite this article: C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Intégrale curviligne non réguliere du temps local. Dans cette Note, pour un temps local d’une semi-martingale continue,
nous définissons ’intégrale ffooo g(x)dL} pour toute fonction g de g-variation finie (2 < ¢ < 3) en utilisant I’intégrale de Lyons
pour des chemins non-réguliers. Nous obtenons alors la formule de Tanaka—Meyer pour une fonction continue f lorsque V™ f
existe et est de g-variation finie avec 2 < g < 3. Le cas correspondant a 1 < g < 2 utilise ’intégrale de Young (voir Feng et Zhao
[C.R. Feng, H.Z. Zhao, Two-parameter p, g-variation path and integration of local times, Potential Analysis 25 (2006) 165-204.]).
Pour citer cet article : C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Consider a continuous semimartingale X; = M; + V;, where M; is a continuous local martingale and V; is a contin-
uous process with finite variation. In [1], Lemma 2.1 says that the local time L} of X; is of bounded p-variation in x for
any ¢t > 0 a.s. for any p > 2. So in Theorem 2.2, we gave a new condition for the Tanaka—Meyer formula and the inte-
gral ffooo V™ f(x)dy L} as a Young integral, when V™ f (x) is of bounded g-variation (1 < g < 2). But what about the

case ¢ > 2? Let us first try to define the integral | fooo g(x)d Ly pathwise for a continuous function g(x) with bounded
q-variation (2 < g < 3); we also take 2 < p < 3. We still decompose the local time L} = Zj‘ +> ifk l{x;; <«x}» Where
i;‘ =L} — L}~ Here Zi‘ is continuous in x, and x,’j, k=1,2,..., are the countable discontinuous points of L;.

From Lemma 2.2 in [1], we know that A(r, x) := ), ifk l{x; <x} 18 of bounded variation in x for each 7. So the key
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point is to define f g(x) dx pathwise for continuous g(x) with bounded g-variation (2 < g < 3). For this, we
will use Lyons’ rough path theory, see [3] and also [2].

Let [x’, x”] be any interval in R. From the proof of Lemma 2.1 in [1], for any p > 2, we know that there ex1sts
a constant ¢ > 0 such that £ |L” L“ll’ <clb—alP?, ie. Lx satisfies the Holder condition in [3] with exponent 2
Denote by w a control of g(x). Then |g(b) — g(a)|? < w(a, b) for any (a bye A:={(a,b): x’ <a<b<x"}). Itis
obvious that wi(a, b) := w(a, b) + (b — a) is also a control of g. Set h = ->. It is trivial to see that, for any 8 > g (so

ho > 1), |g(b) — g(a)|? < wi(a, b)", for any (a, b) € A. Denote Z, = (L", (x)). Then we can see that Z, satisfies,
for such i = l, and any 6 > g,

E\Z, - Z, | < cwi(a, b) for any (a,b) € A, @))

for some constant ¢ > 0. Set w;(x) := w;(x/, x), and forany m € N, Dy :={x"=x{ <x' <--- <x3, =x"} a
partition of [x’, x”] such that w1 (x}") — w1 (x]" ) = 2,,, wy(x’, x”). It is obvious that x;" — x;" | < zl,,,un (x’, x"). Now
define a continuous and bounded variation path Z(m) by:

wi(x) —wi () m m
Z(m)y :=Zm o ——A"Z forx;_ | <x<x[", 2)
S w (") —wi(xgty)
where [ =1,...,2", and A'Z = Zynm — Zym . The corresponding smooth rough path Z(m) is built by taking its

iterated path integrals, i.e. for any (a, b) € A,

Z(m)a b= / dZ(m)y, ® -+ @ dZ(m)y;. 3)

a<xy<--<xj<b

Recall that the 6-variation metric dy on Cp g (A, T([G])(Rz)) is defined by [3]:

i/0
dp(Z,Y)= max dip(Z',Y')= max su zZ o)
o2 1<i<[0] v ) 1<i<[e]D[,p,, (Zl v = Vil

In the following, we will show that {Z(m)},,cy converges to a geometric rough path Z in the 8-variation topology
when 2 < g < 3, in which Zl = Zp — Z,. We call Z the canonical geometric rough path associated with Z.

About the first level path Z(m)a »» the method and results are similar to those in Chapter 4 in [3]. We can prove
sup,,, supp D, |Z(m)x,_],x,| < o0 a.s. and,

Theorem 1. Assume q > 1. Let 6 > q. For the continuous process Zy = (L, , 8(x)) satisfying (1), we have

1/6
Zsup<Z|Z(m)x“x[ x,lx,|0> <00 as. (4)

In particular, (Z(m)cll’ 5) converges to (Z;’ p) in the 8-variation distance a.s. for any (a, b) € A.
We next consider the second level path Z(m)?l As in [3], we can also see that, if m < n, Z(m)z,l L =
b Tk
22(’”_”)_1(A7’ Z)®2, where [ is chosen such that xlm_l < xk_1 < xk < xl candif m > n,
1 1 zﬂlfllk
2
Zomy g =5MZ@AZ+ Y (ArzeArZ-AMZRANZ). 5)

P =21 (k—1)+1
r<l

Similar to the proof of Proposition 4.3.3 in [3], we have:

Proposition 2. Assume g > 2. Let 6 > q. Then for m <

1 0h—1)/2
o2 < c( ) , 6)

on +m

on

2 2
D ElZm+ 15 g =Ly

k=1
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where C depends on 0, h(:= %), wi(x’, x"), and c in (1).
For the case when m > n, we have the following key estimate:
Proposition 3. Assume 2 < g < 4. Let g < 6 < 4. Then for m > n, we have that

02 1\O/4 7 1\ 2ho 1\0/2/ 1\ 2ho—30
<C o Sm + o o ) (7

where C is a generic constant and also depends on 0, h(:= cl,)’ wi(x’, x"), and c in (1).

E[Zm+ 13 o —Zm)y

1%k

n
1%k

The proof of the proposition is based on (5) and the following estimate (8). To see (8), first by using Tanaka’s
formula (cf. [4] and [5]) and 3. < L;* = [§ Lix )< dVs = Vi = Vo = [ 1{x(9)=x) dVs, we have that
t t
=X =0T = Xo—0)" - / Lx>x} dMs — (Vi = Vo) 1= ¢ (x) — / Lix,>xy dMs = (Vi = V).
0 0

Now by using the following estimates in the proof of Lemma 2.1 in [1]: for any y > 1 and a; < aj+1, |¢r(@i+1) —
@ (@)’ <27 (@is1 — @), El fy L <X, <arpr) AMs |7 < caiv1 — a;)?/?, we have that

2 3/2
) wl(x/’x//)2+2( ) w](x/7x//)3/2i|

+1 +1
E[Aanr leAg; le] C|:<2m+1 2m+l1

2r—1

1 M
/ st <xo<apth gt <x gy 4OMDs
0

1 3/2
C(—) L ifr £,
< 21m+1 )
W, ifr=1.

Here C is a generic constant and also depends on wy(x’, x”).
From the estimations of Propositions 2, 3 and Proposition 4.1.2 in [3], we obtain:

Theorem 4. Assume 2 < q < 4. Let ¢ <8 < 4. Then for the continuous process Zx = (lN,f , g(x)) satisfying (1), there
exists a unique Z! on A taking values in (R*)®' (i =1, 2) such that

N7
Zsup<2|z(m)xl lxl Xl lxl|9/l> - 0’

both almost surely and in L' (82, F, P) as m — oo. In particular, when 2 < g <3, Z.= (1, Z", Z?) is the canonical
geometric rough path associated with Z . Moreover, Za,b =2Zy—Z,.

In the following, we will only consider the case that 2 < q < 3 and take 6 € (g, 3). From Chen’s identity, it is easy
to know that for any (a, b) € A, 72 ab = llmm(Da =0 Z 0(Z + Zl . ® Z! ). So there exists:

Xi s Xit1 X Xit1

r—1

lim Y (22, )21+ gLy — L))

m(D —0
( [a,h]) i—0
r—1

= olim D (@ 2+ (800 = g@) (L™ = L) + g(@)(Ly — L)
Pl 2o

= (22 )21 +g@)(L! — LY. )
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Denote this limit by fub g(x) dI:;‘ . Here (Z?L »)2.1 is the lower-left element of the 2 x 2 matrix Zfl’ b

Let Z;(x) := (Z", gj(x)), where g;(-) is of bounded g-variation uniformly in j for 2 < ¢ < 3, and when j — oo,
gj(x) — g(x) for all x € R. Repeating the above argument, for each j, we can find the canonical geometric rough
path Z; = (1, Z}, Z?) associated with Z, the integral fa” gj(0)dLY = (Z))?2 ,)2.1+gj(a)(L? — L¥), and the smooth
rough path Z;(m) = (1, Z; (m)*, Z; (m)?). Actually, (Z./)zll,h — chz,b in the sense of the uniform topology, and also in
the sense of the 6-variation topology. As for (Z j)g, »» WE can easily see that

o ((Z)2 Z7) < oo (Z))% (Z;(m))7) + do g ((Z;(m))*, Z(m)?) + do g (Z(m)?, Z2). (10)

From Theorem 4, we know that d> ¢ (Z(m)?,Z?) — 0 as m — 00. Moreover, it is not difficult to see from the proofs
of Propositions 2, 3, and Theorem 4, that d2 ¢ ((Z )%, (Z;(m))?) — 0 as m — oo uniformly in j. It is also easy to
prove that, for any fixed m, d2 9 ((Z; (m))z, Z(m)2) — 0 as j — oo. Hence it follows from a standard argument that
dz,g((Zj)z, Z?) — 0 as j — oo. This implies that (Zj)g,b — Zz’b as j — oo. Then by (9) and the definition of
fub gi(x) dI:f, we know that fab gj(x) dif — fab g(x) dI:f as j — 0o. Note now that the local time L7 has a compact

support in x a.s. So it is easy to see from taking [x’, x”'] covering the support of L7 that the above construction of the
integrals and the convergence can work for the integrals on R. Therefore we have:

Proposition 5. Let Z j (x) := (Zf, gi(x), Z(x) := (Zf, g(x)), where g;(-), g(-) are of bounded q-variation uniformly
inj,2<q<3. Assume gj(x) — g(x) as j — oo forall x € R. Then as j — 00, Z;(-) — Z(-) a.s. in the 0-variation
distance. Moreover, as j — oo, [0 g;(x) dLY — [0 8(x) dL¥ a.s.

For the jump part i(¢, x) of the local time, from Lebesgue’s dominated convergence theorem, f fooo gj(x)dh(t, x) —
ffooog(x) dh(t,x), as j — 0o. So we can get ffooo gj(x)dL} — ffooog(x) dL}, as j — oco. Note that we can choose
smooth g; such that g;(x) — g(x) as j — oo for each x. In this case, the rough path integral ffooo gj(x) dI:f agrees
with the Riemann integral and converges to the rough path integral ffooo g(x)dLy. If g(x) has finite discontinuities,

we can treat it easily by considering the integral piece by piece. Finally, we deduce an extension of the Tanaka—Meyer
formula by a smoothing procedure.

Theorem 6. Let X = (X;);>0 be a continuous semimartingale and f : R — R be an absolutely continuous function
and have left derivative V™~ f. Assume that, V™ f is left continuous with finite discontinuities, locally bounded, and is
of bounded q-variation, where 1 < g < 3. Then ffooo V™ f(x)di L} has a modification which is continuous in t such
that P-a.s.

t oo
f(Xt)Zf(XO)+/V_f(Xs)dXs - / Vo) deLy, 0<1 <oo. (11
0 —00

Here the integral ffooo V™ f(x)dyL7 is a Lebesgue—Stieltjes integral when q = 1, a Young integral when 1 < g <2,
and a Lyons’ rough path integral when 2 < q < 3, respectively.

Remark 1. Although ffooo V™ f(x)d, L} has a continuous version, it is not clear whether or not Z(¢) in the rough
path space (£2y, dg) has a version which is continuous in 7 in the metric dp.
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