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Abstract

We study the Lipschitz structures on the geodesic compactification of a regular tree, that are preserved by the automorphism
group. They are shown to be similar to the compactifications introduced by William Floyd, and a complete description is given. To
cite this article: B. Kloeckner, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Compactifications lipschitziennes des arbres. On étudie les structures lipschitziennes portées par la compactification géodé-
sique d’un arbre régulier, et qui sont préservées par l’action du groupe des automorphismes. On montre qu’elles sont semblables
aux compactifications définies par William Floyd, et on en donne une description complète. Pour citer cet article : B. Kloeckner,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In [4], we described all possible differentiable structures on the geodesic compactification of the hyperbolic space,
for which the action of its isometries is differentiable. We consider here the similar problem for regular trees and
obtain a description of “differentiable” compactifications, based on an idea of William Floyd [3]. A tree has a geodesic
compactification, but it is obviously not a manifold and we shall in fact replace the differentiability condition by a
Lipschitz one.

Note that we only consider regular trees so that we have a large group of automorphisms, hence the greatest possible
rigidity in our problem. A close case is that of the universal covering of a finite graph (that is, when the automorphism
group is cocompact). Our study does not extend as it is to this case, in particular one can convince oneself by looking
at the barycentric division of a regular tree that condition (1) in Theorem 2.1 should be modified. However, similar
results should hold, up to considering the translates of a fundamental domain instead of the edges at some point.

This Note is made of two sections. The first one recalls some facts about regular trees and their automorphisms,
Floyd compactifications, and gives the definition of a Lipschitz compactification. The second one contains the result
and its proof.
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1. Preliminaries

1.1. Regular trees and their automorphisms

We denote by Tn the regular tree of valency n � 3 and by Tn is topological realization, obtained by replacing each
abstract edge by a segment. All considered metrics on Tn shall be length metrics, since general metrics could have no
relation at all with the combinatorial structure of Tn. Up to isometry, two length metrics on Tn that are compatible with
the topology differ only by the length of the edges. We shall therefore identify Tn equipped with such a metric and Tn

equipped with a labelling of the edges by positive real numbers (the label corresponding to the length of the edge).
When all edges are chosen of length 1, we call the resulting metric space the “standard metric realization” of Tn,
denoted by Tn(1). Its metric shall be denoted by d ; it coincides on vertices with the usual combinatorial distance.

There is a natural one-to-one correspondence between automorphism of Tn and isometries of Tn(1). We denote
both groups by Aut(Tn) and endow them with the compact-open topology, so that a basis of neighborhoods of identity
is given by the sets BK(Id) = {φ ∈ Aut(Tn);φ(x) = x ∀x ∈ K} where K runs over all finite sets of vertices.

Given an automorphism φ, one defines the translation length of φ as the integer T (φ) = minx{d(x,φ(x))} where
the minimum is taken over all points (not only vertices) of Tn(1). The following alternative is classical:

(i) if T (φ) > 0 then there is a unique invariant bi-infinite path (xi)i∈Z and φ(xi) = xi+T (φ) for all i,
(ii) if T (φ) = 0 then either φ fixes some vertex, or φ has a unique fixed point in Tn(1), which is the midpoint of an

edge.

In the first case, φ is said to be a translation (a unitary translation if T (φ) = 1). Any translation is a power of a unitary
translation.

1.2. Compactification of trees

The standard metric tree Tn(1) is a CAT(0) complete length space, thus is a Hadamard space (see for example [2]).
Therefore, it has a geodesic compactification we now briefly describe.

A boundary point p is a class of asymptotic geodesic rays, where two geodesic rays γ1 = x0, x1, . . . , xi, . . . and
γ2 = y0, y1, . . . , yj , . . . are said to be asymptotic if they are eventually identical: there are indices i0 and j0 so that for
all k ∈ N, on has xi0+k = yj0+k . The point p is said to be the endpoint of any geodesic ray of the given asymptote
class.

The union T n = Tn ∪ ∂Tn is given the following topology: for a point that is not on the boundary, a basis of
neighborhoods is given by its neighborhoods in Tn; for a boundary point p, a basis of neighborhoods is given by the
connected components of Tn \ {x} containing a geodesic ray asymptotic to p, where x runs over the vertices

It is a general property of Hadamard spaces that Aut(Tn) acts on T n by homeomorphisms for this topology. Our
goal will be to see which additional structure can be added to this topology, that is preserved by Aut(Tn).

We have no differentiable structure on T n, but due to the Rademacher theorem it is natural to look at Lipschitz
structures instead.

Definition 1.1. Let X be a metrizable topological space. A Lipschitz structure [δ] on X is the data of a metric δ that
is compatible with the topology of X, up to local Lipschitz equivalence (two metrics δ1, δ2 are said to be locally
Lipschitz equivalent if the identity map (X, δ1) → (X, δ2) is locally bilipschitz).

The natural isomorphisms of a space X endowed with a Lipschitz structure are the locally bilipschitz maps. Usually,
for an action of a Lie group on a manifold to be differentiable, one asks the map G × M → M to be differentiable.
Similarly, we say that an action of a topological group Γ on a metrizable topological space X is Lipschitz if it is a
continuous action by locally bilipschitz maps, and if moreover the Lipschitz factor is locally uniform.

We can now define our main object of study:

Definition 1.2. A Lipschitz compactification of Tn is a Lipschitz structure [δ] on T n, where δ is a length metric, and
such that the action of Aut(Tn) on T n is Lipschitz.
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In [3], Floyd introduced a method for compactifying a graph. We give definitions that are adapted to the simpler
case of trees.

Definition 1.3. By a Floyd function we mean a function h : N →]0,+∞[ such that
∑

r h(r) < +∞. Two Floyd
functions h1, h2 are said to be comparable if there is a C > 1 such that for all r ∈ N one has

C−1h2(r) � h1(r) � Ch2(r).

Definition 1.4. A Floyd metric on T n is the length metric obtained from a vertex x0 and a Floyd function h by
assigning to each edge e the length h(d), where d ∈ N is the combinatorial distance between e and x0.

By a Floyd compactification of Tn we mean the topological space T n endowed with the Lipschitz structure corre-
sponding to a Floyd metric.

The condition that
∑

h(r) converges ensures that we do get a distance on T n. For example, the distance between
two boundary points p and p′ is 2

∑
r�R h(r) where R is the combinatorial distance between x0 and the only geodesic

joining p and p′.
Two Floyd metrics obtained from the same point x0 and Floyd functions h1, h2 are easily seen to define the same

Lipschitz structures if and only if h1 and h2 are comparable.

2. Description of all Lipschitz compactifications of regular trees

Theorem 2.1. Any Lipschitz compactification of Tn is a Floyd compactification.
The Floyd compactification of Tn obtained from a Floyd function h and a base point x0 is a Lipschitz compactifi-

cation if and only if there is a constant 0 < η < 1 so that for all r ∈ N

h(r + 1) � ηh(r). (1)

Remark 1. Condition (1) implies that h decreases at most exponentially fast. It is interesting to compare this with
the usual conformal compactification of the hyperbolic space, obtained by multiplying the metric by a factor that is
exponential in the distance to a fixed point.

Remark 2. Condition (1) implies that the considered Lipschitz structure depends only upon h, not x0. We can therefore
denote this compactification by T n(h).

Proof. We first prove that any Lipschitz compactification of Tn is a Floyd compactification.
Let δ′ be any length metric in the given Lipschitz class, and fix any vertex x0 of Tn. We define h by h(r) =

min δ′(x, y) where the minimum is taken over all edges xy that are at combinatorial distance r from x0. Then h is a
Floyd function because x0 is at finite δ′ distance from the boundary. Denote by δ the Floyd metric obtained from x0
and h, and let us prove that [δ] = [δ′]. It is sufficient to prove that there is a constant C so that for all r , two edges that
are at combinatorial distance r from x0 have their δ′ lengths that differ by a factor at most C.

For any R ∈ N, let B(R) be the closed ball of radius R and center x0 in Tn(1). It contains a finite number of edges,
so that there is a constant CR that satisfies the above property for all r � R.

Since the compactification is assumed to be Lipschitz, for all p ∈ ∂Tn there are a neighborhood V of p, a neigh-
borhood U of the identity and a constant k so that any φ ∈ U is k-Lipschitz on V . Since ∂Tn is compact, we can
find a finite number of such quadruples (pi,Vi,Ui, ki) so that the Vi cover ∂Tn. Moreover we can assume that the Vi

are the connected components of Tn \ B(R) for some radius R, and that U = ⋂
Ui = BB(R)(Id). Since for all i and

r > R, U acts transitively on the set of edges of Vi that are at combinatorial distance r from x0, those edges have their
δ′-length that differ by a factor at most C′ = supki . Moreover, there is an automorphism φ0 that fixes x0 and permutes
cyclically the Vi . Since φ0 is locally Lipschitz, there is a R′ and a C′′ so that for all r � R′ and all couple (i1, i2),
there are edges of Vi1 and Vi2 that are at combinatorial distance r from x0 and whose δ′ lengths differ by a factor at
most C′′. The supremum C of CR′ and C′′C′2 is the needed constant.

Consider now the Floyd compactification obtained from x0 and h and denote by δ the associated Floyd metric.
By construction, any automorphism φ of Tn that fixes x0 is an isometry for δ, thus is locally bilipschitz for the
corresponding Lipschitz structure.
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Two translations are close to one another when they differ by an element close to identity. An element close enough
to identity must fix x0, thus is an isometry. Therefore, we only need to prove that a given translation is Lipschitz to
get that all automorphisms in a neighborhood are equilipschitz. Checking unitary translations is sufficient since any
translation is an iterate of one of those.

Let φ be a unitary translation, and γ = . . . , y−1, y0, y1, . . . be its translated geodesic, where we assume that y0
realizes the minimal combinatorial distance d0 between vertices of γ and x0. By local finiteness, φ is locally bilipschitz
around any point of Tn and we need only check the boundary.

Let us start with the attractive endpoint p of γ . Assume that our Floyd compactification is Lipschitz. It implies
that φ is locally bilipschitz around p, in particular there is a r0 > 0 and a k > 1 such that for any r � r0,

k δ(yr+1, yr+2) � δ(yr , yr+1)

h(r + d0 + 1) � k−1h(r + d0)

which gives condition (1).
Conversely, assume that condition (1) holds.
For any vertex x we have

∣
∣d(φ(x), x0) − d(x, x0)

∣
∣ � 1 + 2d0

since the worst case is when x = x0 or x is in a connected component of Tn \ {x0} other than that of γ . Therefore, the
length of an edge and of its image by φ differ by a factor bounded by η−(1+2d0). Therefore, φ is Lipschitz. Since φ−1

is also a unitary translation, φ is bilipschitz. �
It would be interesting to consider more general spaces, for example euclidean buildings or CAT(−1) buildings

like the Ipq described by Bourdon in [1]. It is not obvious how to define the Floyd compactification: for example, a
mere scaling of the distance in each cell by a factor depending on the combinatorial distance to a fixed cell would
create gluing problems (an edge shared by two faces having two different length). This spaces could therefore be less
flexible than trees.
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