

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 375-378

http://france.elsevier.com/direct/CRASS1/

Combinatoire

Sur une conjecture de Dehornoy

Florent Hivert a, Jean-Christophe Novelli b, Jean-Yves Thibon b

^a LITIS, université de Rouen, avenue de l'université, 76801 Saint-Etienne-du-Rouvray cedex, France ^b Institut Gaspard-Monge, université Paris-est, 77454 Marne-la-Vallée cedex 2, France

Reçu le 26 octobre 2007 ; accepté après révision le 8 février 2008

Disponible sur Internet le 3 mars 2008

Présenté par Christophe Soulé

Résumé

Soit M_n la matrice $n! \times n!$, indexée par les permutations de \mathfrak{S}_n , et définie par $M_n(\sigma, \tau) = 1$ si toute descente de τ^{-1} est aussi une descente de σ , et $M_n(\sigma, \tau) = 0$ sinon. Nous démontrons le résultat suivant, conjecturé par P. Dehornoy : soit $P_n(x)$ le polynôme caractéristique de M_n . Alors, $P_n(x)$ divise $P_{n+1}(x)$ dans $\mathbb{Z}[x]$. **Pour citer cet article : F. Hivert et al., C. R. Acad. Sci. Paris, Ser. I** 346 (2008).

© 2008 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Abstract

On a conjecture by Dehornoy. Let M_n be the $n! \times n!$ matrix indexed by permutations of \mathfrak{S}_n , defined by $M_n(\sigma, \tau) = 1$ if every descent of τ^{-1} is also a descent of σ , and $M_n(\sigma, \tau) = 0$ otherwise. We prove the following result, conjectured by P. Dehornoy: let $P_n(x)$ be the characteristic polynomial of M_n . Then, $P_n(x)$ divides $P_{n+1}(x)$ in $\mathbb{Z}[x]$. To cite this article: F. Hivert et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

1. Introduction

On note \mathfrak{S}_n le groupe symétrique sur n éléments. Rappelons qu'une descente d'une permutation σ de \mathfrak{S}_n est un entier i tel que $\sigma(i) > \sigma(i+1)$. Un recul de σ est une descente de son inverse σ^{-1} . On note $\mathrm{Des}(\sigma)$ et $\mathrm{Rec}(\sigma)$ les ensembles de descentes et de reculs de σ . On identifiera la permutation σ au mot $\sigma(1)\cdots\sigma(n)$.

Rappelons que toute permutation peut s'intepréter comme une tresse simple. Une suite finie $(\sigma_i)_{i=1,...,l}$ de tresses simples, ou encore de permutations, est dite *normale* si et seulement si pour tout i < l on a

$$\operatorname{Rec}(\sigma_{i+1}) \subset \operatorname{Des}(\sigma_i).$$
 (1)

Pour compter le nombre de suite normales de longueur n et en particulier, avoir une idée du comportement asymptotique de ce nombre quand $n \to \infty$, Dehornoy [3,4] introduit la matrice d'adjacence du graphe dont les chemins correspondent aux suites normales : M_n est de dimension $n! \times n!$, avec

$$M_n(\sigma, \tau) := \begin{cases} 1 & \text{si } \operatorname{Rec}(\tau) \subset \operatorname{Des}(\sigma), \\ 0 & \text{sinon.} \end{cases}$$
 (2)

Adresses e-mail: florent.hivert@univ-rouen.fr (F. Hivert), novelli@univ-mlv.fr (J.-C. Novelli), jyt@univ-mlv.fr (J.-Y. Thibon).

On veut montrer la conjecture suivante [3] :

Conjecture 1.1. Le polynôme caractéristique $P_n(x)$ de M_n divise $P_{n+1}(x)$ dans $\mathbb{Z}[x]$.

Pour cela, nous allons interpréter la suite de matrices (M_n) comme un endomorphisme Φ de l'algèbre de Hopf **FQSym** des « fonctions quasi-symétriques libres », et exhiber une dérivation δ qui commute avec Φ .

2. Interprétation dans les fonctions quasi-symétriques libres

Rappelons que **FQSym** est la \mathbb{C} -algèbre associative graduée [5], dont une base en degré n est formée par des éléments \mathbf{F}_{σ} , $\sigma \in \mathfrak{S}_{n}$, qui se multiplient par « mélange décalé », c'est-à-dire, pour $\alpha \in \mathfrak{S}_{k}$ et $\beta \in \mathfrak{S}_{l}$,

$$\mathbf{F}_{\alpha}\mathbf{F}_{\beta} = \sum_{\gamma \in \alpha \coprod \beta[k]} \mathbf{F}_{\gamma} \tag{3}$$

où $\beta[k]$ désigne le mot dont la *i*ème lettre est $\beta(i) + k$, et \square le produit de mélange (ou battage) usuel. Le produit de mélange est lui même défini récursivement par $au \square bv = a(u \square bv) + b(au \square v)$, pour a et b des lettres, et u, v des mots, le mot vide étant neutre. Il existe un coproduit qui munit **FQSym** d'une structure d'algèbre de Hopf graduée connexe.

Soit Φ_n l'endomorphisme de \mathbf{FQSym}_n défini par

$$\Phi(\mathbf{F}_{\sigma}) = \sum_{\text{Rec}(\tau) \subset \text{Des}(\sigma)} \mathbf{F}_{\tau}.$$
 (4)

La matrice de Φ_n dans la base \mathbf{F} est la transposée de M_n et la somme directe $\Phi = \bigoplus_n \Phi_n$ est un endomorphisme de degré 0 de \mathbf{FQSym} .

Proposition 2.1. Supposons qu'il existe une dérivation ∂ , surjective, de degré -1, vérifiant

$$\partial \circ \Phi = \Phi \circ \partial$$
. (5)

Alors, la Conjecture 1.1 est vraie.

Démonstration. Soit $K = \ker(\partial)$ en degré n et L un supplémentaire de K dans \mathbf{FQSym}_n , de sorte que $\mathbf{FQSym}_n = K \oplus L$. L'endomorphisme Φ_n laisse K stable car $\partial(\Phi_n(x)) = \Phi_{n-1}(\partial(x))$ et donc $\partial(x) = 0$ entraîne $\partial(\Phi_n(x)) = 0$. Donc, sur la décomposition $\mathbf{FQSym}_n = K \oplus L$, la matrice est triangulaire par blocs :

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \tag{6}$$

et ainsi, le polynôme caractéristique de Φ_n est le produit de ceux de A et C, où A est la matrice de la restriction de Φ_n à K et C la matrice de Φ_n sur le quotient \mathbf{FQSym}_n/K . Puisque ∂ est surjective, elle induit un isomorphisme entre les espaces \mathbf{FQSym}_n/K et \mathbf{FQSym}_{n-1} , d'où le résultat. De plus, on peut vérifier que la divisibilité a bien lieu dans $\mathbb{Z}[x]$, car il est facile de calculer explicitement le coefficient du terme de plus bas degré de P_n . \square

3. Construction de la dérivation équivariante

Le problème se transporte à diverses algèbres de Hopf combinatoires à travers une chaîne de morphismes naturels. Au bout de cette chaîne, on trouve les fonctions symétriques, où la réponse est relativement facile à deviner. On peut ensuite remonter naturellement (mais non canoniquement) la dérivation le long de la chaîne. On obtient ainsi une dérivation que nous allons maintenant décrire.

Soit σ un élément de \mathfrak{S}_n et i un entier. On note σ' le mot $(n+1) \cdot \sigma \cdot 0$. Soit u_i (resp. v_i) la lettre qui précède (resp. suit) la lettre i dans σ' pour i dans l'intervalle [1, n]. On note alors

$$\operatorname{sgn}_{i}(\sigma) := \begin{cases} +1 & \text{si } u_{i} < i < v_{i}, \\ -1 & \text{si } u_{i} > i > v_{i}, \\ 0 & \text{sinon.} \end{cases}$$
 (7)

et $del_i(\sigma)$ le standardisé du mot, c'est-à-dire la permutation ayant les inversions aux mêmes places que ce mot, obtenu en supprimant i de σ . Soit ∂ l'application linéaire définie par

$$\partial_i \mathbf{F}_{\sigma} := \operatorname{sgn}_i(\sigma) \mathbf{F}_{\operatorname{del}_i(\sigma)} \quad \text{et} \quad \partial := \sum_{i=1}^n \partial_i.$$
 (8)

Par exemple, $\partial \mathbf{F}_{51342} = -\mathbf{F}_{1342} + \mathbf{F}_{4132} - \mathbf{F}_{4123}$.

Lemme 3.1. Soient $\sigma \in \mathfrak{S}_n$ et $\tau \in \mathfrak{S}_m$. Pour tout $i \in [1, n]$, on a

$$\partial_i(\mathbf{F}_{\sigma}\mathbf{F}_{\mu}) = \partial_i(\mathbf{F}_{\sigma})\mathbf{F}_{\mu}. \tag{9}$$

Pour tout $i \in [n+1, n+m]$, on a

$$\partial_i(\mathbf{F}_{\sigma}\mathbf{F}_{\mu}) = \mathbf{F}_{\sigma}\partial_{i-n}(\mathbf{F}_{\mu}).$$
 (10)

Démonstration. On reprend les notations utilisées pour définir sgn. Soit $i \in [1, n]$. On va considérer l'ensemble X des mots w du mélange décalé de σ et τ tels que $\operatorname{sgn}_i(w) \neq 0$.

- Si $u_i < i < v_i$, X est l'ensemble des mots du mélange décalé de la forme

$$\cdots u_i i B v_i \cdots$$
 (11)

où B ne contient que des lettres de $\tau[n]$. En particulier, tous ces mots ont pour image 1 par sgn_i , et comme leurs images par del_i est l'ensemble des permutations apparaissant dans $\mathbf{F}_{\mathrm{del}_i(\sigma)}\mathbf{F}_{\tau}$, on conclut la démonstration dans ce cas.

- Si $u_i > i > v_i$, X est l'ensemble des mots du mélange décalé de la forme

$$\cdots u_i Bi v_i \cdots$$
 (12)

où B ne contient que des lettres de $\tau[n]$. On conclut donc comme dans le premier cas.

- Si $u_i > i < v_i$, X est égal à l'ensemble vide, de sorte que

$$\partial_i(\mathbf{F}_{\sigma}\mathbf{F}_{\mu}) = 0 = \partial_i(\mathbf{F}_{\sigma})\mathbf{F}_{\mu}. \tag{13}$$

- Enfin, si $u_i < i > v_i$, X contient les mots du mélange décalé de la forme

$$\cdots u_i i B v_i \cdots \text{ et } \cdots u_i B i v_i \cdots$$
 (14)

L'image par sgn_i du premier (resp. second) ensemble est 1 (resp. -1). Comme ils ont même image par application de del_i , les paires d'éléments ayant même ensemble B apportent une contribution nulle à $\partial_i(\mathbf{F}_{\sigma}\mathbf{F}_{\mu})$, de sorte que

$$\partial_i(\mathbf{F}_{\sigma}\mathbf{F}_{\mu}) = 0 = \partial_i(\mathbf{F}_{\sigma})\mathbf{F}_{\mu}. \tag{15}$$

La seconde équation se montre de même. □

Les équations (8) à (10) entraînent en particulier :

Proposition 3.2. L'application ∂ est une dérivation de \mathbf{FQSym} : $\partial(\mathbf{F}_{\sigma}\mathbf{F}_{\mu}) = \partial\mathbf{F}_{\sigma} \cdot \mathbf{F}_{\mu} + \mathbf{F}_{\sigma} \cdot \partial\mathbf{F}_{\mu}$.

Cette propriété permet maintenant d'obtenir sans difficulté le résultat principal :

Théorème 3.3. Les endomorphismes Φ et ∂ commutent.

Démonstration. Rappelons que si $D = \{d_1 < \cdots < d_k\}$ est l'ensemble des descentes d'une permutation $\sigma \in \mathfrak{S}_n$, on peut coder D par la suite d'entiers $I = (d_2 - d_1, \dots, d_k - d_{k-1}, n - d_k)$ appelée *composition des descentes* de σ et notée $I = C(\sigma)$. Notons alors

$$S^{I} := \sum_{\text{Rec}(\tau) \subseteq \text{Des}(\sigma)} \mathbf{F}_{\tau}, \tag{16}$$

où $I = \mathbf{C}(\sigma) = (i_1, \dots, i_k)$. Il est bien connu (cf. [5]) que $S^I = \mathbf{F}_{12..i_1} \mathbf{F}_{12..i_2} \cdots \mathbf{F}_{12..i_k}$. Comme ∂ est une dérivation, on en déduit que

$$\partial \left(\Phi(\mathbf{F}_{\sigma}) \right) = \sum_{I'} C_I^{I'} S^{I'}, \tag{17}$$

où l'ensemble des I' s'obtient en retranchant 1 successivement à chaque part i de I et où $C_I^{I'}$ est égal à la valeur de cette part moins deux. On vérifie immédiatement que $\Phi(\partial(\mathbf{F}_{\sigma}))$ est égal à la même somme. \square

Finalement, ∂ est surjective, car les images des \mathbf{F}_{σ} telles que $\sigma(1) = n$ sont linéairement indépendantes, comme le montre un simple argument de triangularité par rapport à l'ordre lexicographique. On déduit donc la Conjecture 1.1 de la Proposition 2.1.

4. Remarques

Les applications Φ et ∂ descendent à divers quotients et sous-algèbres de **FQSym**, en particulier aux fonctions symétriques non-commutatives, aux fonctions quasi-symétriques et aux fonctions symétriques ordinaires. Il est intéressant d'observer que si on identifie Φ à un élément de **FQSym** \otimes **FQSym***, il s'écrit

$$\Phi = \sum_{\text{Des}(\tau) \subseteq \text{Des}(\sigma)} \mathbf{F}_{\sigma} \otimes \mathbf{F}_{\tau^{-1}} = \sum_{I} R_{I} \otimes S^{J} = J_{0}(A, B)^{-1}$$
(18)

où J_0 est la fonction de Bessel non-commutative introduite dans [6], généralisant la fonction de Bessel usuelle et proposant un relèvement non-commutatif des identités de [1,2]. La commutation de ∂ et de Φ équivaut à une équation fonctionnelle intéressante pour Φ^{-1} .

Références

- [1] L. Carlitz, The coefficients of the reciprocal of $J_0(z)$, Arch. Math. 6 (1955) 121–127.
- [2] L. Carlitz, R. Scoville, T. Vaughan, Enumeration of pairs of sequences by rises, falls and levels, Manuscripta Math. 19 (1976) 211–243.
- [3] P. Dehornoy, Combinatorics of normal sequences of braids, J. Comb. Theory Ser. A 114 (2007) 389-409, arXiv: math.CO/0511114.
- [4] P. Dehornoy, Still another approach to the braid ordering, Pacific Math. J., in press; arXiv: math.GR/0506495.
- [5] G. Duchamp, F. Hivert, J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002) 671–717.
- [6] J.-C. Novelli, J.-Y. Thibon, Noncommutative Bessel symmetric functions, Canadian Math. Bull., in press; also math.CO/0602043.