

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 305-308

COMPTES RENDUS Mathematique

http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

The A-module structure induced by a Drinfeld A-module of rank 2 over a finite field

Mohamed-Saadbouh Mohamed-Ahmed

Département de mathématiques, Université du Maine, avenue Olivier-Messiaen, 72085 Le Mans cedex 9, France

Received 13 March 2006; accepted after revision 15 January 2008

Available online 12 February 2008

Presented by Gérard Laumon

Abstract

Let \mathbf{F}_q be a finite field and let L/\mathbf{F}_q be a finite extension. Let \mathbf{F} be the Frobenius of L ($\mathbf{F}: x \mapsto x^{\#L}$) and let (P) be the $\mathbf{F}[T]$ characteristic of **F**. Let *m* be the degree of the extension $L/\mathbf{F}_q[T]/(P)$. There exists then $c \in \mathbf{F}_q[T]$ and $\mu \in \mathbf{F}_q$ such that the characteristic polynomial $P_{\mathbf{F}}$ of **F** is equal to $P_{\mathbf{F}}(X) = X^2 - cX + \mu P^m$. Our main result is an analogue of Deuring's Theorem on elliptic curves: let $M = \frac{\mathbf{F}_q[T]}{(i_1)} \oplus \frac{\mathbf{F}_q[T]}{(i_2)}$, where i_1 and i_2 are two polynomials of $\mathbf{F}_q[T]$ such that $i_2 \mid i_1$ and $i_2 \mid (c-2)$, there exists an ordinary Drinfeld $\mathbf{F}_q[T]$ -module Φ of rank 2 over L such that the structure of the finite $\mathbf{F}_q[T]$ -module L^{Φ} induced by Φ over L is isomorphic to M. To cite this article: M.-S. Mohamed-Ahmed, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La structure de A-module induite sur un A-module de Drinfeld de rang 2 sur un corps fini. Soit F_q un corps fini et L/F_q une extension finie. Soit **F** le Frobenius de L (**F**: $x \mapsto x^{\#L}$) et (P) la **F**[T]-caractéristique de **F**. Soit m le degré de l'extension $L/\mathbf{F}_q[T]/(P)$. Il existe alors $c \in \mathbf{F}_q[T]$ et $\mu \in \mathbf{F}_q$ tels que le polynôme caractéristique $P_{\mathbf{F}}$ de \mathbf{F} soit égal à $P_{\mathbf{F}}(X) = X^2 - cX + \mu P^m$. Notre résultat principal est un parfait analogue du théorème de Deuring pour les courbes elliptiques : soit $M = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{$ $\frac{\mathbf{F}_q[T]}{(i_1)} \oplus \frac{\mathbf{F}_q[T]}{(i_2)}$, où i_1 et i_2 sont deux polynômes de $\mathbf{F}_q[T]$ tels que $i_2 \mid i_1$ et $i_2 \mid (c-2)$. Il existe alors un $\mathbf{F}_q[T]$ -module de Drinfeld Φ ordinaire de rang 2 sur L tel que la structure du $\mathbf{F}_q[T]$ -module fini L^{Φ} induite par Φ sur L soit isomorphe à M. Pour citer cet article : M.-S. Mohamed-Ahmed, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let K be a global field of characteristic p (namely a rational function field of one indeterminate over a finite field \mathbf{F}_{a} with p^{s} elements). We fix a place of K, denoted by ∞ , and we call A the ring of elements regular away from the place ∞ . Let L be a commutative field of characteristic $p, \gamma : A \to L$ be a morphism of rings. The kernel of this

E-mail address: mohamedsaadbouh@yahoo.fr.

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.01.012

morphism is denoted by the principal ideal (P). We put m = [L, A/P] (the extension degree of L over A/P) and $d = \deg P$.

Let τ be the Frobenius of \mathbf{F}_q ($\tau: x \mapsto x^q$). We denote by $L\{\tau\}$ the ring of polynomials in τ (namely the ring of Ore's polynomials) with the usual addition and the product given by the commutation rule $\tau \lambda = \lambda^q \tau$ for all $\lambda \in L$. A Drinfeld *A*-module $\Phi: A \to L\{\tau\}$ is a morphism of rings of *A* into $L\{\tau\}$ such that for all $a \in A$ non-invertible (i.e. $a \notin \mathbf{F}_q^*$) we have deg_{τ} $\Phi_a > 0$ and for all $a \in A$, there exists a rational number *r* such that deg_{τ} $\Phi_a = r \deg a(\deg a = \dim_{\mathbf{F}_q} \frac{A}{a.A})$. This number *r* is called the rank of Φ . The morphism Φ defines an *A*-module structure over the field *L*, noted L^{Φ} , where the name of a Drinfeld *A*-module for a morphism Φ . This structure of *A*-module depends on Φ and, especially, on its rank (see [1,4,2]).

Let Φ be a Drinfeld A-module of rank 2 over a finite field L and let $P_{\Phi}(X)$ be its characteristic polynomial. J.-K. Yu [8] proved that, for an ordinary Drinfeld modules of rank 2, $P_F(X) = X^2 - cX + \mu P^m$ where $\mu \in \mathbf{F}_q^*$, $c \in A$ and deg $c \leq \frac{m.d}{2}$, which is the Hasse–Weil analogy, in this case. Let χ be the Euler–Poincaré characteristic of A (i.e. an ideal of A). We can consider the ideal $\chi(L^{\Phi}) = (P_F(1))$, denoted henceforth by χ_{Φ} , which is by definition a divisor of A corresponding for the elliptic curves to the number of points of the variety over their base field.

We will be interested in Drinfeld A-module structures $L^{\hat{\Phi}}$ of rank 2 and we will prove that for an ordinary Drinfeld $\mathbf{F}_q[T]$ -module, this structure is always the sum of two cyclic and finite $\mathbf{F}_q[T]$ -modules: $\frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$ where (i_1) and (i_2) are two ideals of A such that $i_2 | i_1$. Let $P_F(X)$ the characteristic polynomial of Φ . We will show that $\chi_{\Phi} = (P_F(1)) = (i_1)(i_2)$, so if we put $i = \gcd(i_1, i_2)$, then $i^2 | P_F(1)$. We give a following analogy of Deuring's theorem for elliptic curves:

Theorem 1.1. Let $c \in A$, and $M = \frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$ where i_1 , i_2 are two polynomials of A such that $i_2 \mid i_1$ and $i_2 \mid (c-2)$. Then there exists an ordinary Drinfeld A-module Φ over L, of rank 2, such that the coefficient of X in $P_{\Phi}(X)$ is -c and $L^{\Phi} \simeq M$.

We first recall Deuring's theorem for elliptic curves (see [3]):

Theorem 1.2 (*Deuring's Theorem*). Let $M = \binom{c-1 - A}{B} \in \mathcal{M}_{2 \times 2}(\mathbb{Z}/N\mathbb{Z})$ and q be a power of a prime number. If we suppose that $|c| \leq 2.\sqrt{q}$, $B \mid A$, $B \mid c-2$, $A \cdot B = N := q + 1 - c$ and (c, q) = 1, then there exists an ordinary elliptic curve E over \mathbf{F}_q such that $E(\mathbf{F}_q) \simeq \mathbb{Z}/A \oplus \mathbb{Z}/B$.

2. Structure of the A-module L^{Φ}

A Drinfeld A-module of rank 2 has the form (if an isomorphism $A \simeq \mathbf{F}_q[T]$ and $K \simeq \mathbf{F}_q(T)$ is chosen) $\Phi(T) = a_1 + a_2\tau + a_3\tau^2$, where $a_i \in L$, $1 \leq i \leq 2$ and $a_3 \in L^*$. Let Φ and Ψ be two Drinfeld modules over an A-field L. A morphism from Φ to Ψ over L is an element $p(\tau) \in L\{\tau\}$ such that $p\Phi_a = \Psi_a p$, for all $a \in A$. A non-zero morphism is called an isogeny. We note that this is possible only between two Drinfeld modules of the same rank. The set of all morphisms forms an A-module denoted by $\operatorname{Hom}_L(\Phi, \Psi)$.

In particular, if $\Phi = \Psi$ the *L*-endomorphism ring $\operatorname{End}_L \Phi = \operatorname{Hom}_L(\Phi, \Phi)$ is a subring of $L\{\tau\}$ and an *A*-module which contains $\Phi(A)$. Let \overline{L} be a fix algebraic closure of *L* and (*P*) the *A*-characteristic of *L*. $\Phi_a(\overline{L}) := \Phi[a](\overline{L}) = \{x \in \overline{L}, \Phi_a(x) = 0\}$ and $\Phi_{(P)}(\overline{L}) = \bigcap_{a \in (P)} \Phi_a(\overline{L})$. We say that Φ is supersingular if the *A*-module constituted by a (*P*)-division points $\Phi_{(P)}(\overline{L})$ is trivial, otherwise Φ is said to be an ordinary module (see [4]). We have the following result about the *A*-module structure of L^{Φ} :

Proposition 2.1. The Drinfeld A-module Φ gives a finite A-module L^{Φ} which is isomorphic to $\frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$ where (i_1) and (i_2) are two ideals of A such that $\chi_{\Phi} = (i_1)(i_2)$.

Proof. The *A*-module Φ induces a finite *A*-module structure L^{Φ} of the same rank than Φ over the finite field *L*. Since Φ is of rank 2, L^{Φ} is also of rank 2. Let i_1, i_2 be two unitary polynomials in *A* such that $L^{\Phi} = \frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$. We know that L^{Φ} is included in or equal to $\Phi(\chi_{\Phi}) \simeq \frac{A}{\chi_{\Phi}} \oplus \frac{A}{\chi_{\Phi}}$. Since the Euler–Poincaré characteristic χ is multiplicative on exact sequences, we have $\chi_{\Phi} = (i_1)(i_2)$.

Let $i = \text{gcd}(i_1, i_2)$. It is clear, by the Chinese lemma, that the non-cyclicity of the A-module L^{Φ} impose (i_1) and (i_2) to be not coprime, which means that $i \neq 1$ and implies that $i^2 | P_{\Phi}(1)$ (because $\chi_{\Phi} = (P_F(1)) = (i_1)(i_2)$). \Box

In the rest of this Note, we suppose that $i_2 | i_1 (i_2 \notin \mathbf{F}_q^*)$, otherwise L^{Φ} is a cyclic *A*-module and it can be written on the form A/χ_{Φ} . Let be $c \in \mathbf{F}_q[T]$ and $\mu \in \mathbf{F}_q$ such that $P_F(X) = X^2 - cX + \mu P^m$.

Proposition 2.2. If $L^{\Phi} \simeq \frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$, then $i_2 \mid c-2$.

Proof. We know that the A-module structure L^{Φ} is stable by the endomorphism Frobenius F of L. We choose a basis for A/χ_{Φ} for which the A-module L^{Φ} is generated by $(i_1, 0)$ and $(0, i_2)$ and we consider $M_F = \begin{pmatrix} a & b \\ a_1 & b_1 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(A/\chi_{\Phi})$ the matrix of F according to this basis.

Now, since $\operatorname{Tr} M_F = a + b_1 = c$, $M_F((i_1, 0)) = (i_1, 0)$ and $M_F((0, i_2)) = (0, i_2)$, we have $a \cdot i_1 \equiv i_1 \pmod{\chi_{\Phi}}$ implying that a - 1 is divisible by i_1 . Similarly, since $b_1 \cdot i_2 \equiv i_2 \pmod{\chi_{\Phi}}$ implying that $b_1 - 1$ is divisible by i_2 . It follows that $c - 2 = a - 1 + b_1 - 1$ is divisible by i_2 (since we always have $i_2 \mid i_1$). \Box

Let (ρ) be a prime ideal of A, different from the A-characteristic (P). We define the finite A-module $\Phi((\rho))$ as being the A-module $(A/(\rho))^2$.

Let g be an ideal of A, F be the Frobenius of L and $O_{K(F)}$ the maximal A-order in K(F). The discriminant of the A-order $A + g.O_{K(F)}$ is $\Delta.g^2$, where Δ is the discriminant of the characteristic polynomial $P_F(X) = X^2 - cX + \mu P^m$. So each order is defined by its discriminant and will be noted by O(disc) (see [6,7,5]). According to Proposition 2.2, the inclusion $\Phi((\rho)) \subset L^{\Phi}$ implies clearly that $\rho^2 | P_F(1)$ and $(\rho) | c - 2$. We have the following:

Proposition 2.3. Let Φ be an ordinary Drinfeld A-module of rank 2 and let (ρ) be an ideal of A, different from the A-characteristic (P) of L, such that $\rho^2 | P_F(1)$ and $\rho | c - 2$. Then the inclusion $\Phi((\rho)) \subset L^{\Phi}$ holds if and only if we have $O(\Delta/\rho^2) \subset End_L \Phi$.

To prove this proposition we need the following lemma:

Lemma 2.4. The assertion $\Phi((\rho)) \subset L^{\Phi}$ is equivalent to the assertion $\frac{F-1}{\rho} \in \operatorname{End}_L \Phi$.

Proof. Since L^{Φ} is stable by the isogeny F, $L^{\Phi} = \text{Ker}(F - 1)$. Next, by definition we have $\Phi((\rho)) = \text{Ker}((\rho))$. It follows, according to Theorem 4.7.8 of [4], that the inclusion $\Phi((\rho)) \subset L^{\Phi}$ holds if and only if there exists $g \in \text{End}_L \Phi$ such that $F - 1 = g.\rho$, that is $\frac{F-1}{\rho} \in \text{End}_L \Phi$, confirming the lemma. \Box

Proof of Proposition 2.3. Let $N(\frac{F-1}{\rho})$ denote the norm of the isogeny $\frac{F-1}{\rho}$ which is a principal ideal generated by $\frac{P_{\Phi}(1)}{(\rho)^2}$ and let Tr be the trace of the same isogeny which is equal to $\frac{c-2}{\rho}$. Then the discriminant of the A-module $A[\frac{F-1}{\rho}]$ is given by disc $A([\frac{F-1}{\rho}]) = \text{Tr}(\frac{F-1}{\rho})^2 - 4N(\frac{F-1}{\varrho}) = \frac{c^2 - 4\mu P^m}{\rho^2} = \Delta/\rho^2$, implying the required inclusion. Now assume that $O(\Delta/\rho^2) \subset \text{End}_L \Phi$ and prove that $\Phi(\rho) \subset L^{\Phi}$. The order corresponding of the discriminant Δ/ρ^2 is $A[\frac{F-1}{\rho}]$, which means that $\frac{F-1}{\varrho} \in \text{End}_L \Phi$ and we conclude (by using Lemma 2.4) that $\Phi((\rho)) \subset L^{\Phi}$. The

proof is complete.

Corollary 2.5. If $O(\Delta/\rho^2) \subset \operatorname{End}_L \Phi$, then L^{Φ} is not cyclic.

Proof. Since $\Phi((\rho))$ is not cyclic (by construction) and since the non-cyclicity of the *A*-module L^{Φ} is equivalent to have $\Phi((\rho)) \subset L^{\Phi}$, the corollary follows from Proposition 2.3. \Box

Now, we are able to prove the following theorem:

Theorem 2.6. Let $M = \frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$ be a A-module such that $i_2 | i_1, i_2 | (c-2)$. Then there exists an ordinary Drinfeld A-module Φ over L of rank 2 such that $L^{\Phi} \simeq M$.

Proof. Let us denote by Φ the Drinfeld A-module for which the characteristic of Euler–Poincaré is given by $\chi_{\Phi} = (i_1).(i_2)$ and having as endomorphisme ring $O(\Delta/i_2^2)$ (where Δ always denotes the discriminant of the characteristic polynomial of the Frobenius F). Since (by construction) $O(\Delta/(i_2^2)) \subset \text{End}_L \Phi$, then Proposition 2.3 (applied with $\rho = i_2$) implies $\Phi(i_2) \simeq (A/i_2)^2 \subset L^{\Phi}$. However, since on other hand $L^{\Phi} \subseteq \Phi(\chi_{\Phi}) \simeq \frac{A}{\chi_{\Phi}} \oplus \frac{A}{\chi_{\Phi}}$, it finally follows that $L^{\Phi} = \frac{A}{(i_1)} \oplus \frac{A}{(i_2)}$. The theorem is proved. \Box

We end this Note by conjecturing the following:

Conjecture 2.7. Let *L* be a finite field, and $M \in \mathcal{M}_{2\times 2}(A/\chi_{\Phi})$ and $\overline{P} = P \pmod{\chi_{\Phi}}$. Suppose that $(\det M = \overline{P}^m, \operatorname{Tr}(M) = c \text{ and } c \nmid P$. Then there exists an ordinary Drinfeld A-module over *L*, of rank 2, for which the associated Frobenius matrix M_F is equal to *M*.

Note that the Theorem 2.6 is an immediate consequence of Conjecture 2.7. Indeed, it suffices to apply the conjecture to the matrix $M = \begin{pmatrix} c-1 & i_1 \\ i_2 & -1 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(A/\chi_{\Phi}).$

References

- [1] B. Angles, One some subring of Ore polynomials connected with finite Drinfeld modules, J. Algebra 181 (2) (1996) 507-522.
- [2] V.G. Drinfeld, Elliptique modules, Math. USSR Sb. 94 (136) (1974) 594-627, 656.
- [3] M. Deuring, Die Typen der Multiplikatorenringe Ellipticher Funktionenkorper, Abh. Math. Sem. Univ. Hamburg 14 (1941) 197–272.
- [4] D. Goss, Basic Structures of Function Field Arithmetic, A Series of Modern Surveys in Mathematics, vol. 35, Springer, 1996.
- [5] I. Reiner, Maximal Orders, Academic Press, 1975.
- [6] R. Shoof, Nonsingular plane cubic curves over finite fields, J. Combinatory Theory Ser. A 46 (1987) 183–211.
- [7] M.A. Tsfasman, S.G. Vladut, Algebraic-Geometric Codes, Math. Appl., Kluwer, Dordrecht, 1991.
- [8] J.-K. Yu, Isogenis of Drinfeld modules over finite fields, J. Number Theory 54 (1) (1995) 161-171.