The A-module structure induced by a Drinfeld A-module of rank 2 over a finite field

Mohamed-Saadbouh Mohamed-Ahmed
Département de mathématiques, Université du Maine, avenue Olivier-Messiaen, 72085 Le Mans cedex 9, France

Received 13 March 2006; accepted after revision 15 January 2008
Available online 12 February 2008
Presented by Gérard Laumon

Abstract

Let \mathbf{F}_{q} be a finite field and let L / \mathbf{F}_{q} be a finite extension. Let \mathbf{F} be the Frobenius of $L\left(\mathbf{F}: x \mapsto x^{\# L}\right)$ and let (P) be the $\mathbf{F}[T]-$ characteristic of \mathbf{F}. Let m be the degree of the extension $L / \mathbf{F}_{q}[T] /(P)$. There exists then $c \in \mathbf{F}_{q}[T]$ and $\mu \in \mathbf{F}_{q}$ such that the characteristic polynomial $P_{\mathbf{F}}$ of \mathbf{F} is equal to $P_{\mathbf{F}}(X)=X^{2}-c X+\mu P^{m}$. Our main result is an analogue of Deuring's Theorem on elliptic curves: let $M=\frac{\mathbf{F}_{q}[T]}{\left(i_{1}\right)} \oplus \frac{\mathbf{F}_{q}[T]}{\left(i_{2}\right)}$, where i_{1} and i_{2} are two polynomials of $\mathbf{F}_{q}[T]$ such that $i_{2} \mid i_{1}$ and $i_{2} \mid(c-2)$, there exists an ordinary Drinfeld $\mathbf{F}_{q}[T]$-module Φ of rank 2 over L such that the structure of the finite $\mathbf{F}_{q}[T]$-module L^{Φ} induced by Φ over L is isomorphic to M. To cite this article: M.-S. Mohamed-Ahmed, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La structure de \boldsymbol{A}-module induite sur un \boldsymbol{A}-module de Drinfeld de rang 2 sur un corps fini. Soit \mathbf{F}_{q} un corps fini et L / \mathbf{F}_{q} une extension finie. Soit \mathbf{F} le Frobenius de $L\left(\mathbf{F}: x \mapsto x^{\# L}\right)$ et (P) la $\mathbf{F}[T]$-caractéristique de \mathbf{F}. Soit m le degré de l'extension $L / \mathbf{F}_{q}[T] /(P)$. Il existe alors $c \in \mathbf{F}_{q}[T]$ et $\mu \in \mathbf{F}_{q}$ tels que le polynôme caractéristique $P_{\mathbf{F}}$ de \mathbf{F} soit égal à $P_{\mathbf{F}}(X)=X^{2}-$ $c X+\mu P^{m}$. Notre résultat principal est un parfait analogue du théorème de Deuring pour les courbes elliptiques : soit $M=$ $\frac{\mathbf{F}_{q}[T]}{\left(i_{1}\right)} \oplus \frac{\mathbf{F}_{q}[T]}{\left(i_{2}\right)}$, où i_{1} et i_{2} sont deux polynômes de $\mathbf{F}_{q}[T]$ tels que $i_{2} \mid i_{1}$ et $i_{2} \mid(c-2)$. Il existe alors un $\mathbf{F}_{q}[T]$-module de Drinfeld Φ ordinaire de rang 2 sur L tel que la structure du $\mathbf{F}_{q}[T]$-module fini L^{Φ} induite par Φ sur L soit isomorphe à M. Pour citer cet article : M.-S. Mohamed-Ahmed, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let K be a global field of characteristic p (namely a rational function field of one indeterminate over a finite field \mathbf{F}_{q} with p^{s} elements). We fix a place of K, denoted by ∞, and we call A the ring of elements regular away from the place ∞. Let L be a commutative field of characteristic $p, \gamma: A \rightarrow L$ be a morphism of rings. The kernel of this

[^0]morphism is denoted by the principal ideal (P). We put $m=[L, A / P]$ (the extension degree of L over A / P) and $d=\operatorname{deg} P$.

Let τ be the Frobenius of $\mathbf{F}_{q}\left(\tau: x \mapsto x^{q}\right)$. We denote by $L\{\tau\}$ the ring of polynomials in τ (namely the ring of Ore's polynomials) with the usual addition and the product given by the commutation rule $\tau \lambda=\lambda^{q} \tau$ for all $\lambda \in L$. A Drinfeld A-module $\Phi: A \rightarrow L\{\tau\}$ is a morphism of rings of A into $L\{\tau\}$ such that for all $a \in A$ non-invertible (i.e. $a \notin \mathbf{F}_{q}^{*}$) we have $\operatorname{deg}_{\tau} \Phi_{a}>0$ and for all $a \in A$, there exists a rational number $r \operatorname{such}$ that $\operatorname{deg}_{\tau} \Phi_{a}=r \operatorname{deg} a\left(\operatorname{deg} a=\operatorname{dim}_{\mathbf{F}_{q}} \frac{A}{a \cdot A}\right)$. This number r is called the rank of Φ. The morphism Φ defines an A-module structure over the field L, noted L^{Φ}, where the name of a Drinfeld A-module for a morphism Φ. This structure of A-module depends on Φ and, especially, on its rank (see [1,4,2]).

Let Φ be a Drinfeld A-module of rank 2 over a finite field L and let $P_{\Phi}(X)$ be its characteristic polynomial. J.-K. Yu [8] proved that, for an ordinary Drinfeld modules of rank 2, $P_{F}(X)=X^{2}-c X+\mu P^{m}$ where $\mu \in \mathbf{F}_{q}^{*}, c \in A$ and $\operatorname{deg} c \leqslant \frac{m . d}{2}$, which is the Hasse-Weil analogy, in this case. Let χ be the Euler-Poincaré characteristic of A (i.e. an ideal of A). We can consider the ideal $\chi\left(L^{\Phi}\right)=\left(P_{\mathbf{F}}(1)\right)$, denoted henceforth by χ_{Φ}, which is by definition a divisor of A corresponding for the elliptic curves to the number of points of the variety over their base field.

We will be interested in Drinfeld A-module structures L^{Φ} of rank 2 and we will prove that for an ordinary Drinfeld $\mathbf{F}_{q}[T]$-module, this structure is always the sum of two cyclic and finite $\mathbf{F}_{q}[T]$-modules: $\frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$ where $\left(i_{1}\right)$ and (i_{2}) are two ideals of A such that $i_{2} \mid i_{1}$. Let $P_{F}(X)$ the characteristic polynomial of Φ. We will show that $\chi_{\Phi}=\left(P_{\mathbf{F}}(1)\right)=$ $\left(i_{1}\right)\left(i_{2}\right)$, so if we put $i=\operatorname{gcd}\left(i_{1}, i_{2}\right)$, then $i^{2} \mid P_{F}(1)$. We give a following analogy of Deuring's theorem for elliptic curves:

Theorem 1.1. Let $c \in A$, and $M=\frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$ where i_{1}, i_{2} are two polynomials of A such that $i_{2} \mid i_{1}$ and $i_{2} \mid(c-2)$. Then there exists an ordinary Drinfeld A-module Φ over L, of rank 2, such that the coefficient of X in $P_{\Phi}(X)$ is $-c$ and $L^{\Phi} \simeq M$.

We first recall Deuring's theorem for elliptic curves (see [3]):
Theorem 1.2 (Deuring's Theorem). Let $M=\left(\begin{array}{cc}c-1-A \\ B & 1\end{array}\right) \in \mathcal{M}_{2 \times 2}(\mathbb{Z} / N \mathbb{Z})$ and q be a power of a prime number. If we suppose that $|c| \leqslant 2 . \sqrt{q}, B|A, B| c-2, A . B=N:=q+1-c$ and $(c, q)=1$, then there exists an ordinary elliptic curve E over \mathbf{F}_{q} such that $E\left(\mathbf{F}_{q}\right) \simeq \mathbb{Z} / A \oplus \mathbb{Z} / B$.

2. Structure of the A-module L^{Φ}

A Drinfeld A-module of rank 2 has the form (if an isomorphism $A \simeq \mathbf{F}_{q}[T]$ and $K \simeq \mathbf{F}_{q}(T)$ is chosen) $\Phi(T)=$ $a_{1}+a_{2} \tau+a_{3} \tau^{2}$, where $a_{i} \in L, 1 \leqslant i \leqslant 2$ and $a_{3} \in L^{*}$. Let Φ and Ψ be two Drinfeld modules over an A-field L. A morphism from Φ to Ψ over L is an element $p(\tau) \in L\{\tau\}$ such that $p \Phi_{a}=\Psi_{a} p$, for all $a \in A$. A non-zero morphism is called an isogeny. We note that this is possible only between two Drinfeld modules of the same rank. The set of all morphisms forms an A-module denoted by $\operatorname{Hom}_{L}(\Phi, \Psi)$.

In particular, if $\Phi=\Psi$ the L-endomorphism $\operatorname{ring} \operatorname{End}_{L} \Phi=\operatorname{Hom}_{L}(\Phi, \Phi)$ is a subring of $L\{\tau\}$ and an A-module which contains $\Phi(A)$. Let \bar{L} be a fix algebraic closure of L and (P) the A-characteristic of $L . \Phi_{a}(\bar{L}):=\Phi[a](\bar{L})=$ $\left\{x \in \bar{L}, \Phi_{a}(x)=0\right\}$ and $\Phi_{(P)}(\bar{L})=\bigcap_{a \in(P)} \Phi_{a}(\bar{L})$. We say that Φ is supersingular if the A-module constituted by a (P)-division points $\Phi_{(P)}(\bar{L})$ is trivial, otherwise Φ is said to be an ordinary module (see [4]). We have the following result about the A-module structure of L^{Φ} :

Proposition 2.1. The Drinfeld A-module Φ gives a finite A-module L^{Φ} which is isomorphic to $\frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$ where (i_{1}) and $\left(i_{2}\right)$ are two ideals of A such that $\chi_{\Phi}=\left(i_{1}\right)\left(i_{2}\right)$.

Proof. The A-module Φ induces a finite A-module structure L^{Φ} of the same rank than Φ over the finite field L. Since Φ is of rank $2, L^{\Phi}$ is also of rank 2. Let i_{1}, i_{2} be two unitary polynomials in A such that $L^{\Phi}=\frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$. We know that L^{Φ} is included in or equal to $\Phi\left(\chi_{\Phi}\right) \simeq \frac{A}{\chi_{\Phi}} \oplus \frac{A}{\chi_{\Phi}}$. Since the Euler-Poincaré characteristic χ is multiplicative on exact sequences, we have $\chi_{\Phi}=\left(i_{1}\right)\left(i_{2}\right)$.

Let $i=\operatorname{gcd}\left(i_{1}, i_{2}\right)$. It is clear, by the Chinese lemma, that the non-cyclicity of the A-module L^{Φ} impose $\left(i_{1}\right)$ and $\left(i_{2}\right)$ to be not coprime, which means that $i \neq 1$ and implies that $i^{2} \mid P_{\Phi}(1)$ (because $\chi_{\Phi}=\left(P_{F}(1)\right)=\left(i_{1}\right)\left(i_{2}\right)$).

In the rest of this Note, we suppose that $i_{2} \mid i_{1}\left(i_{2} \notin \mathbf{F}_{q}^{*}\right)$, otherwise L^{Φ} is a cyclic A-module and it can be written on the form A / χ_{Φ}. Let be $c \in \mathbf{F}_{q}[T]$ and $\mu \in \mathbf{F}_{q}$ such that $P_{F}(X)=X^{2}-c X+\mu P^{m}$.

Proposition 2.2. If $L^{\Phi} \simeq \frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$, then $i_{2} \mid c-2$.
Proof. We know that the A-module structure L^{Φ} is stable by the endomorphism Frobenius F of L. We choose a basis for A / χ_{Φ} for which the A-module L^{Φ} is generated by $\left(i_{1}, 0\right)$ and $\left(0, i_{2}\right)$ and we consider $M_{F}=\left(\begin{array}{cc}a & b \\ a_{1} & b_{1}\end{array}\right) \in$ $\mathcal{M}_{2 \times 2}\left(A / \chi_{\Phi}\right)$ the matrix of F according to this basis.

Now, since $\operatorname{Tr}_{F}=a+b_{1}=c, M_{F}\left(\left(i_{1}, 0\right)\right)=\left(i_{1}, 0\right)$ and $M_{F}\left(\left(0, i_{2}\right)\right)=\left(0, i_{2}\right)$, we have $a \cdot i_{1} \equiv i_{1}\left(\bmod \chi_{\Phi}\right)$ implying that $a-1$ is divisible by i_{1}. Similarly, since $b_{1} \cdot i_{2} \equiv i_{2}\left(\bmod \chi_{\Phi}\right)$ implying that $b_{1}-1$ is divisible by i_{2}. It follows that $c-2=a-1+b_{1}-1$ is divisible by i_{2} (since we always have $i_{2} \mid i_{1}$).

Let (ρ) be a prime ideal of A, different from the A-characteristic (P). We define the finite A-module $\Phi((\rho))$ as being the A-module $(A /(\rho))^{2}$.

Let g be an ideal of A, F be the Frobenius of L and $O_{K(F)}$ the maximal A-order in $K(F)$. The discriminant of the A-order $A+g . O_{K(F)}$ is $\Delta . g^{2}$, where Δ is the discriminant of the characteristic polynomial $P_{F}(X)=X^{2}-c X+\mu P^{m}$. So each order is defined by its discriminant and will be noted by O (disc) (see [6,7,5]). According to Proposition 2.2, the inclusion $\Phi((\rho)) \subset L^{\Phi}$ implies clearly that $\rho^{2} \mid P_{\mathbf{F}}(1)$ and $(\rho) \mid c-2$. We have the following:

Proposition 2.3. Let Φ be an ordinary Drinfeld A-module of rank 2 and let (ρ) be an ideal of A, different from the A-characteristic (P) of L, such that $\rho^{2} \mid P_{F}(1)$ and $\rho \mid c-2$. Then the inclusion $\Phi((\rho)) \subset L^{\Phi}$ holds if and only if we have $O\left(\Delta / \rho^{2}\right) \subset E n d_{L} \Phi$.

To prove this proposition we need the following lemma:
Lemma 2.4. The assertion $\Phi((\rho)) \subset L^{\Phi}$ is equivalent to the assertion $\frac{F-1}{\rho} \in \operatorname{End}_{L} \Phi$.
Proof. Since L^{Φ} is stable by the isogeny $F, L^{\Phi}=\operatorname{Ker}(F-1)$. Next, by definition we have $\Phi((\rho))=\operatorname{Ker}((\rho))$. It follows, according to Theorem 4.7 .8 of [4], that the inclusion $\Phi((\rho)) \subset L^{\Phi}$ holds if and only if there exists $g \in \operatorname{End}_{L} \Phi$ such that $F-1=g . \rho$, that is $\frac{F-1}{\rho} \in \operatorname{End}_{L} \Phi$, confirming the lemma.

Proof of Proposition 2.3. Let $N\left(\frac{F-1}{\rho}\right)$ denote the norm of the isogeny $\frac{F-1}{\rho}$ which is a principal ideal generated by $\frac{P_{\Phi}(1)}{(\rho)^{2}}$ and let Tr be the trace of the same isogeny which is equal to $\frac{c-2}{\rho}$. Then the discriminant of the A-module $A\left[\frac{F-1}{\rho}\right]$ is given by $\operatorname{disc} A\left(\left[\frac{F-1}{\rho}\right]\right)=\operatorname{Tr}\left(\frac{F-1}{\rho}\right)^{2}-4 N\left(\frac{F-1}{\varrho}\right)=\frac{c^{2}-4 \mu P^{m}}{\rho^{2}}=\Delta / \rho^{2}$, implying the required inclusion.

Now assume that $O\left(\Delta / \rho^{2}\right) \subset \operatorname{End}_{L} \Phi$ and prove that $\Phi(\rho) \subset L^{\Phi}$. The order corresponding of the discriminant Δ / ρ^{2} is $A\left[\frac{F-1}{\rho}\right]$, which means that $\frac{F-1}{\varrho} \in \operatorname{End}_{L} \Phi$ and we conclude (by using Lemma 2.4) that $\Phi((\rho)) \subset L^{\Phi}$. The proof is complete.

Corollary 2.5. If $O\left(\Delta / \rho^{2}\right) \subset \operatorname{End}_{L} \Phi$, then L^{Φ} is not cyclic.
Proof. Since $\Phi((\rho))$ is not cyclic (by construction) and since the non-cyclicity of the A-module L^{Φ} is equivalent to have $\Phi((\rho)) \subset L^{\Phi}$, the corollary follows from Proposition 2.3.

Now, we are able to prove the following theorem:
Theorem 2.6. Let $M=\frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$ be a A-module such that $i_{2}\left|i_{1}, i_{2}\right|(c-2)$. Then there exists an ordinary Drinfeld A-module Φ over L of rank 2 such that $L^{\Phi} \simeq M$.

Proof. Let us denote by Φ the Drinfeld A-module for which the characteristic of Euler-Poincaré is given by $\chi_{\Phi}=$ $\left(i_{1}\right) .\left(i_{2}\right)$ and having as endomorphisme ring $O\left(\Delta / i_{2}^{2}\right)$ (where Δ always denotes the discriminant of the characteristic polynomial of the Frobenius F). Since (by construction) $O\left(\Delta /\left(i_{2}^{2}\right)\right) \subset \operatorname{End}_{L} \Phi$, then Proposition 2.3 (applied with $\rho=i_{2}$) implies $\Phi\left(i_{2}\right) \simeq\left(A / i_{2}\right)^{2} \subset L^{\Phi}$. However, since on other hand $L^{\Phi} \subseteq \Phi\left(\chi_{\Phi}\right) \simeq \frac{A}{\chi_{\Phi}} \oplus \frac{A}{\chi \Phi}$, it finally follows that $L^{\Phi}=\frac{A}{\left(i_{1}\right)} \oplus \frac{A}{\left(i_{2}\right)}$. The theorem is proved.

We end this Note by conjecturing the following:
Conjecture 2.7. Let L be a finite field, and $M \in \mathcal{M}_{2 \times 2}\left(A / \chi_{\Phi}\right)$ and $\bar{P}=P\left(\bmod \chi_{\Phi}\right)$. Suppose that $\left(\operatorname{det} M=\bar{P}^{m}\right.$, $\operatorname{Tr}(M)=c$ and $c \nmid P$. Then there exists an ordinary Drinfeld A-module over L, of rank 2, for which the associated Frobenius matrix M_{F} is equal to M.

Note that the Theorem 2.6 is an immediate consequence of Conjecture 2.7. Indeed, it suffices to apply the conjecture to the matrix $M=\left(\begin{array}{cc}c-1 & i_{1} \\ i_{2} & -1\end{array}\right) \in \mathcal{M}_{2 \times 2}\left(A / \chi_{\Phi}\right)$.

References

[1] B. Angles, One some subring of Ore polynomials connected with finite Drinfeld modules, J. Algebra 181 (2) (1996) $507-522$.
[2] V.G. Drinfeld, Elliptique modules, Math. USSR Sb. 94 (136) (1974) 594-627, 656.
[3] M. Deuring, Die Typen der Multiplikatorenringe Ellipticher Funktionenkorper, Abh. Math. Sem. Univ. Hamburg 14 (1941) $197-272$.
[4] D. Goss, Basic Structures of Function Field Arithmetic, A Series of Modern Surveys in Mathematics, vol. 35, Springer, 1996.
[5] I. Reiner, Maximal Orders, Academic Press, 1975.
[6] R. Shoof, Nonsingular plane cubic curves over finite fields, J. Combinatory Theory Ser. A 46 (1987) 183-211.
[7] M.A. Tsfasman, S.G. Vladut, Algebraic-Geometric Codes, Math. Appl., Kluwer, Dordrecht, 1991.
[8] J.-K. Yu, Isogenis of Drinfeld modules over finite fields, J. Number Theory 54 (1) (1995) 161-171.

[^0]: E-mail address: mohamedsaadbouh@yahoo.fr.
 1631-073X/\$ - see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2008.01.012

