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Abstract

Let φt : T1M → T1M be the magnetic flow of the pair (g,Ω). We show that if φt preserves a C2,1 codimension one foliation
then (M,g) has constant, nonpositive Gaussian curvature and Ω is a constant multiple of the area form of (M,g). So if the genus
of M is greater than one, the flow is either Anosov or conjugate to a horocycle flow. If M is a torus, the flow is actually geodesic
and flat. To cite this article: J.B. Gomes, R.O. Ruggiero, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Rigidité des flots magnétiques sur des surfaces compactes. Soit φt : T1M → T1M le flot magnétique du pair (g,Ω). Nous
demonstrons que si φt preserve un feuilletage C2,1 de codimension 1, alors la courbure de (M,g) est une constante non positive et
la forme Ω est le produit d’une constante par la forme d’aire de (M,g). Pour citer cet article : J.B. Gomes, R.O. Ruggiero, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Magnetic flows are mathematical models for the motion of a particle under the action of magnetic fields. Geodesic
(trivial magnetic fields) and horocycle flows are particular examples of magnetic fields. Motivated by the famous work
of E. Ghys [2], who classified Anosov flows in circle bundles having C2 foliations, we study rigidity phenomena in
magnetic flows preserving a highly smooth codimension one foliation. The C2 assumption on the weak invariant
foliations of an Anosov flow can be improved to C1,1 by the work of Hurder and Katok [6], namely, C1 smoothness
with Lipschitz derivatives. The main result of the Note is the following, where C2,1 means C2 with Lipschitz C2

derivatives:

Theorem A. Let φt : T1M → T1M be the magnetic flow of the pair (g,Ω) restricted to the unit tangent bundle of a
closed surface M . Suppose that φt preserves a C2,1 codimension one foliation. Then (M,g) has constant, nonpositive
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Gaussian curvature and Ω is a constant multiple of the area form of (M,g). Moreover, if the surface has genus
greater than one the magnetic flow is either Anosov or conjugate to a horocycle flow. If the surface is the torus, the
magnetic flow is actually the geodesic flow of a flat torus.

Theorem A extends a result by G. Paternain [8] for Anosov magnetic flows of compact surfaces of genus greater
than one, with C1,1 weak foliations; and a result by Gomes and Ruggiero [4] for geodesic flows of compact surfaces
which preserve C2,1 codimension one foliations.

2. Magnetic flows on surfaces and the Riccati equation

Let (M,g) be a C∞ Riemannian manifold. The tangent bundle of M will be denoted by T M , the cotangent bundle
of M will be denoted by T ∗M , and the unit tangent bundle of (M,g) by T1M . The map π : T M → M will be the
canonical projection π(p,v) = p, where p ∈ M and v is a vector tangent to M at p. For θ = (p, v), the vertical
subspace Vθ ⊂ TθT M is the kernel of dθπ , the horizontal subspace Hθ ⊂ TθT M is the orthogonal complement of Vθ

with respect to the Sasaki metric.
Now, let (S, g) be a compact surface, and Ω a closed 2-form on S. For a unit vector v ∈ TpS, we will denote by

iv the unique unit vector that is orthogonal to v and such that {v, iv} has the canonical orientation TpS. The Lorentz
force associated to the form Ω , L : T S → T S, is defined by Ωx(v,w) = gx(Lx(v),w). Let α be the canonical 1-form
generating the geodesic flow of (S, g). The magnetic flow of the pair (g,Ω) is the Hamiltonian flow of the function
H : T S → R, H(p, v) = 1

2gp(v, v) with respect to the sympletic form ω = −dα + π∗Ω . Notice that the unit tangent
bundle of (S, g) is a regular energy level of the magnetic flow that is invariant by the dynamics.

Let Ωa be the area form of the surface (S, g), so there exists a unique C∞ function f : S → R such that Ω = f Ωa .
Let X and Xf denote respectively the generators of the geodesic flow for g and the magnetic flow for (g, f Ωa). We
have (see, for instance, [10]) Xf (v) = (v,Lπ(v)(v)) and Xf = X + fV , where V is a unit vector field tangent to the
vertical bundle (chosen in a way that the orientation determined by the horizontal subspace and V is the canonical
one).

The expression q(γ ) = k(γ ) + f 2(γ ) − 〈∇(γ ), iγ ′〉 is called the magnetic curvature. Let J̃ be a magnetic Jacobi
field defined in a magnetic geodesic γ , J its orthogonal projection into a canonically oriented, unit vector orthogonal
to γ ′. As in the geodesic case, the function u = J ′

J
, satisfies (see, for instance, [5,10]) the magnetic Riccati equation

u′ + u2 + q(γ ) = 0.
By the well known connection between invariant Lagrangian bundles and the Riccati equation (Theorem 2 in [9]),

and the fact that a two dimensional, invariant subspace of T1S is isotropic with respect to the form ω, we obtain:

Lemma 2.1. Let (S, g) be a compact surface, and suppose that the magnetic flow of the pair (g,Ω) preserves a
continuous, codimension one foliation F of T1S by smooth leaves. Then the magnetic flow has no conjugate points
and the bundle E of tangent spaces of the leaves are graphs of a continuous family of Riccati operators as follows.
There exists a continuous function U : T1M → R such that

(i) The subspace E(θ) = E ∩ Nθ is the graph of the linear map Ūθ : H ∩ Nθ → V ∩ Nθ given by Ūθ (Z) = U(θ)Z

for every θ ∈ T1M .
(ii) The function uθ (t) given by uθ (t) = U(φt (θ)) is a solution of the Riccati equation u′ + u2 + q = 0, for every

θ ∈ T1M .

Here, Nθ = {ξ ∈ TθT1M; 〈dπ · ξ,dπXf (θ)〉π(θ) = 0} for θ = (p, v). We observe that dθπXf (θ) = v.

3. The Godbillon–Vey number and the magnetic curvature

The Godbillon–Vey class of a transversally oriented, codimension one foliation F of a three manifold M is a de
Rham cohomology class GV (F) = [η ∧ dη] ∈ H

3(M,R) (for details see for instance [11]). If S is a closed oriented
surface and M = T1S, the real number gv(F) = ∫

η ∧ dη is called the Godbillon–Vey number of F .

T1S
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Now, let F be a codimension one, C2 foliation of T1S that is invariant by the magnetic flow. By Lemma 2.1, the
tangent bundle of the foliation F gives us an invariant Lagrangian subbundle. So it has an attached Riccati operator
U : T1S → R as described in Lemma 2.1.

Theorem 3.1. (1) The Godbillon–Vey number of F can be written as

gv(F) = 4π2χ(S) − 3
∫

T1S

(VU)2ν ∧ α ∧ β,

where χ(S) is the Euler characteristic of S;
(2) the function U is constant along the fibres, that is, VU ≡ 0 if, and only if, the magnetic curvature q is a constant

� 0.

The proof of item (1) follows from Cartan’s structural equations and Lemma 2.1. The proof of item (2) is made in
two steps. First, we assume that VU = 0 in T1S, namely, the Riccati operator is constant along vertical fibres. In this
case the Riccati operator defines a function in the surface S, namely, h(p) = U(π−1(p)), where π is the canonical
projection. We would like to show that U is constant. This is a consequence of the next result and the maximum
principle:

Lemma 3.2. If VU = 0 then the function h : S → R given by h(p) = U(π−1(p)) is a C2 harmonic function.

The second step to show item (2) of Theorem 3.1 is easier than step one. Indeed, if the magnetic curvature is
constant, it is easy to show that it has to be nonpositive. If it is negative q = −c2 the flow is Anosov and the Riccati
operator of the foliation is either c or −c. If it is 0 the Riccati operator is 0 as well.

Corollary 3.3. The Godbillon–Vey number of F is maximal if and only if the magnetic curvature is constant.

4. Rigidity: the proof of the main theorem

First of all, we need two topological lemmas which are consequences of the existence of a foliation of T1S by
graphs of the canonical projection:

Lemma 4.1. Let (S, g) be a compact surface, and suppose that there exists a C1 codimension one foliation F of T1S

which is invariant under the magnetic flow of a pair (g,Ω). Then the genus of the surface is greater than 0.

Lemma 4.2. Let (S, g) be a compact surface of genus greater than one. Let F be a C1 codimension 1 foliation of T1S

which is invariant under the magnetic flow of a pair (g,Ω). Then F has no compact leaves.

Now, we can use the following result due to E. Ghys ([3], Theorem 5.3):

Theorem 4.3. Let F be a C2,1 codimension 1 foliation without compact leaves of the unit tangent bundle of a compact
surface S of genus greater than 1. Then F is C2,1 conjugate with a central foliation of the geodesic flow of a metric
with constant curvature −1 in S.

By this theorem and Theorem 3.8 in [6], the Godbillon–Vey number of F equals the Godbillon–Vey number of a
hyperbolic central foliation, so we can apply item (2) of Lemma 3.1 to get,

Theorem 4.4. Let (S, g) be a closed surface of genus greater than one. Assume that there exists a codimension one
foliation F of class C2,1 in T1S, whose leaves are invariant under the magnetic flow of a pair (g,Ω). Then, the
magnetic curvature is a constant � 0.

Next, we look at the consequences of Theorem 4.4 in the geometry of (S, g) and the form Ω = f Ωa defining the
magnetic flow. The following result is straightforward from the definitions:
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Lemma 4.5. Suppose that the magnetic curvature q(x, v) is constant. Then, the function f and the Gaussian curva-
ture k of (S, g) are constants.

Corollary 4.6. Let (S, g) be a closed surface of genus greater than one. Assume that there exists a codimension one
foliation F of class C2,1 in T1S, whose leaves are invariant under the magnetic flow of S. Then, either the magnetic
flow is of Anosov type or is conjugate to a horocycle flow.

Proof. By Theorem 4.4, the magnetic curvature is constant q � 0. If q < 0, the proof of Lemma 4.5 implies that
f 2 < −k, and by results of Grognet in [5], we conclude that the flow is of Anosov type. If q = 0, then k = −f 2 and
the magnetic flow is conjugate to a horocycle flow (see for instance [7]). �

Combining Theorem 4.4 and Lemma 4.5 we get Theorem A in the case where the genus of the surface is greater
than one. Now, we obtain Theorem A in the torus case.

Theorem 4.7. Let (T 2, g) be a 2-torus with a Riemannian metric g. Assume that there exists a codimension one
foliation F of class C1 in T1T

2, whose leaves are invariant under the magnetic flow of a pair (g,Ω). Then f = 0,
that is, the magnetic flow reduces to geodesic flow. Moreover, (T 2, g) has no conjugate points and therefore is flat.

Bialy in [1] shows that for any non-zero magnetic field on a n-torus there are always orbits of the magnetic flow
which have conjugate points, provided that the Riemannian metric is conformally flat. Since the uniformisation theory
for surfaces yields that every metric in T 2 is conformally flat, we get, using Lemma 2.1, that the magnetic flow is in
fact geodesic. Since by Lemma 2.1, the magnetic flow in the torus has no conjugate points, Hopf’s celebrated work
implies that it has to be flat. This concludes the proof of Theorem A.
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