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Abstract

The Malliavin–Thalmaier (Springer Finance, Springer-Verlag, Berlin, 2006) formula was introduced for the simulation of high
dimensional probability density functions. However, when this integration by parts formula is applied directly in computer simu-
lations, we show that it is unstable. We propose an approximation to the Malliavin–Thalmaier formula. In this Note, we find the
order of the bias and the variance of the approximation error, and we apply the Malliavin–Thalmaier formula for the calculation of
Greeks in finance. To cite this article: A. Kohatsu-Higa, K. Yasuda, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimations des distributions de probabilité multidimensionnel pour des variables aléatoires dans l’espace de Wiener. La
formule de Malliavin–Thalmaier a été présentée (Springer Finance, Springer-Verlag, Berlin, 2006) pour la simulation des fonctions
de densité multidimensionnelles. Mais quand cette formule d’intégration par parties est appliquée directement pour la simulation
sur ordinateur, nous prouvons qu’elle est instable. Nous proposons une approximation à la formule de Malliavin–Thalmaier. Dans
cette Note, nous trouvons l’ordre du biais et la variance de l’erreur d’approximation. Nous appliquons la formula de Malliavin–
Thalmaier pour le calcul des Grecques en Finance. Pour citer cet article : A. Kohatsu-Higa, K. Yasuda, C. R. Acad. Sci. Paris,
Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The goal of the present article is to estimate, through simulations, probability density functions of multidimensional
random variables using Malliavin Calculus and discuss some of its applications.

Usually, a result applied to estimate a multidimensional density is the classical integration by parts formula of
Malliavin Calculus that is stated, for example, in Proposition 2.1.5 of Nualart [5]. However, this expression is not very
efficient for computer simulation, that is, it has an iterated Skorohod integral. Recently, Malliavin and Thalmaier [4],
Theorem 4.23, gave a new integration by parts formula that seems to alleviate the computational burden for simulation
of densities in high dimension. We call this formula the Malliavin–Thalmaier formula. In this formula, one needs to

E-mail addresses: kohatsu@sigmath.es.osaka-u.ac.jp (A. Kohatsu-Higa), yasuda@sigmath.es.osaka-u.ac.jp (K. Yasuda).
1631-073X/$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2008.01.009



336 A. Kohatsu-Higa, K. Yasuda / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 335–338
simulate only one Skorohod integral instead of the previous multiple Skorohod integrals. But there is still a problem,
that is, the variance of the estimator is infinite. Therefore we propose a slightly modified estimator that depends on
a modification parameter h, which will converge to the Malliavin–Thalmaier formula as h → 0. This will generate a
small bias and a variance which is not infinite.

First we find the order of the bias and the variance of the approximation error. After obtaining these error estima-
tions and the corresponding optimal parameter h, we apply the Malliavin–Thalmaier formula to finance, especially to
the calculation of Greeks.

Details and proofs of the results given here can be found in Kohatsu-Higa et al. [3].

2. Malliavin–Thalmaier representation of multidimensional density functions

Assume that d � 2 is fixed through this paper. For a multi-index α = (α1, . . . , αm) ∈ {1, . . . , d}m, m ∈ N, we denote
by |α| = m the length of the multi-index.

Let (Ω,F ,P ) be a complete probability space. Suppose that F = (F1, . . . ,Fd) ∈ (D∞)d is a d-dimensional ran-
dom vector on (Ω,F ,P ). Notations and terminologies can be found in Nualart [5].

Definition 2.1. Given the R
d -valued random vector F and the R-valued random variable G, a multi-index α and a

power p � 1 we say that there is an integration by parts formula in Malliavin sense if there exists a random variable
Hα(F ;G) ∈ Lp(Ω) such that

IPα,p(F,G): E

[
∂ |α|

∂xα
f (F )G

]
= E

[
f (F )Hα(F ;G)

]
for all f ∈ C

|α|
0 (Rd).

We represent the delta function by δ0(x) = �Qd(x) for x ∈ R
d , where � means Laplacian. If f ∈ C2

0(Rd), then
the solution of the Poisson equation �u = f is given by the convolution Qd ∗ f where the fundamental solution
(also called Poisson kernel) Qd has the following explicit form; Q2(x) := a−1

2 ln |x| and Qd(x) := −a−1
d

1
|x|d−2 for

d � 3. Here ad is the area of the unit sphere in R
d . The derivative of the Poisson kernel is ∂Qd

∂xi
(x) = Ad

xi

|x|d , where

i = 1, . . . , d , A2 := a−1
2 and for d � 3, Ad := a−1

d (d − 2).
Related to the Malliavin–Thalmaier formula, Bally and Caramellino [1], have obtained the following result:

Proposition 2.2. (Bally and Caramellino [1].) Suppose that for some p > 1, sup|a|�R E[| ∂
∂xi

Qd(F − a)| p
p−1 +

|Qd(F − a)| p
p−1 ] < ∞ for all R > 0, a ∈ R

d . If IPi,p(F ;G), i = 1, . . . , d , holds then the law of F is absolutely
continuous with respect to the Lebesgue measure on R

d and the density pF,G is represented as, for x̂ ∈ R
d ,

pF,G(x̂) = E

[
d∑

i=1

∂

∂xi

Qd(F − x̂)H(i)(F ;G)

]
.

Corollary 2.3. If F is a nondegenerate random vector and G ∈ D
∞, then (2.2) holds for the probability density

function of the random vector F at x̂ ∈ R
d .

Remark 1. Note that pF,G(x̂) = E[G|F = x̂]pF,1(x̂). Therefore the expression in (2.2) corresponds to a density only
in the case that G = 1. To avoid introducing further terminology, we will keep referring to pF,G(x̂) as the ‘density’.

3. Error estimations

In this section, we give the rate of convergence of the modified estimator of the density at x̂ ∈ R
d .

Definitions and Notations.

1. For 0 < h < 1 and x ∈ R
d , define | · |h by |x|h :=

√∑d
i=1 x2 + h.
i
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2. For i = 1, . . . , d , define the following approximation to ∂
∂xi

Qd , for x ∈ R
d , ∂

∂xi
Qh

d(x) := Ad
xi

|x|dh
.

3. Then we define the approximation to the density function of F as; for x ∈ R
d ,

ph
F,G(x) := E

[
d∑

i=1

∂

∂xi

Qh
d(F − x)H(i)(F ;G)

]
. (1)

The next result gives the order of the error of the approximation to the density:

Theorem 3.1. Let F be a nondegenerate random vector and G ∈ D
∞, then for x̂ = (x̂1, . . . , x̂d ) ∈ R

d ,

pF,G(x̂) − ph
F,G(x̂)C x̂

1h ln
1

h
+ C x̂

2h + o(h),

where C x̂
1 and C x̂

2 are constants which depend on x̂, but are independent of h. The constants can be written explicitly.

Formal Proof. We can write

pF,G(x̂) − ph
F,G(x̂) = Ad

d∑
i=1

∫
Rd

(
yi − x̂i

|y − x̂|d − yi − x̂i

|y − x̂|dh

)
E

[
H(i)(F ;G)|F = y

]
pF,1(y)dy1 · · ·dyd.

We separate the domain of integration to |y − x̂| < 1 and |y − x̂| � 1 and use spherical coordinates. For |y − x̂| < 1
term, we apply Taylor expansion to E[H(i)(F ;G)|F = y]pF,1(y) around x̂, and we have the order h ln 1

h
from this

term. For |y − x̂| � 1 term, we can obtain the order h easily. �
Next we compute the rate at which the variance of the estimator using Qh

d diverges:

Theorem 3.2. Let F be a nondegenerate random vector and G ∈ D
∞.

(i) For d = 2 and x̂ ∈ R
d ,

E

[(
2∑

i=1

∂

∂xi

Qh
2(F − x̂)H(i)(F ;G) − pF,G(x̂)

)2]
= C x̂

3 ln
1

h
+ O(1),

where C x̂
3 is a constant which depends on x̂, but is independent of h. The constants can be written explicitly.

(ii) For d � 3 and x̂ ∈ R
d ,

E

[(
d∑

i=1

∂

∂xi

Qh
d(F − x̂)H(i)(F ;G) − pF,G(x̂)

)2]
= C x̂

4
1

hd/2−1
+ o

(
1

hd/2−1

)
,

where C x̂
4 is a constant which depends on x̂, but is independent of h. The constants can be written explicitly.

Remark 2. In particular, for h = 0 one obtains that the variance of the Malliavin–Thalmaier estimator is infinite.

4. The central limit theorem

Obviously when performing simulations, one is also interested in obtaining confidence intervals and therefore
the central limit theorem is useful in such a situation. In what follows ⇒ denotes weak convergence and the index
j = 1, . . . ,N denote N independent copies of the respective random variables.

Theorem 4.1. Let Z be a random variable with standard normal distribution. And (F (j),G(j)) ∈ (D∞)d × D
∞,

j = 1,2, . . . , are independent identically distributed (d + 1)-dimensional random vectors and F (j), j = 1,2, . . . , are
nondegenerate random vectors.
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Fig. 1. Initial value of Stock 1 – Delta.

Initial value of S
(2)
t 100 Interest rate r 0

Drifts of S
(1)
t , S

(2)
t 0 Maturity T 1

Volatility of S
(1)
t 0.25 Strike prices K1, K2 100

Volatility of S
(2)
t 0.2 Number of MC 106

Correlation of B.M. 0.2 Number of time steps 8

Fig. 2. Parameters.

(i) When d = 2, set n = C
h ln(1/h)

and N = C2

h2 ln(1/h)
for some positive constant C fixed throughout. Then

n

(
1

N

N∑
j=1

2∑
i=1

∂

∂xi

Qh
2(F (j) − x̂)H(i)(F ;G)(j) − pF,G(x̂)

)
�⇒

√
C x̂

3Z − C x̂
1C as h → 0,

where H(i)(F ;G)(j), i = 1, . . . , d , j = 1, . . . ,N , denotes the weight obtained in the j th independent simulation
(the same that generates F (j) and G(j)).

(ii) When d � 3, set n = C
h ln(1/h)

and N = C2

hd/2+1(ln(1/h))2 for some positive constant C fixed throughout. Then

n

(
1

N

N∑
j=1

d∑
i=1

∂

∂xi

Qh
d

(
F (j) − x̂

)
H(i)(F ;G)(j) − pF,G(x̂)

)
�⇒

√
C x̂

4Z − C x̂
1C as h → 0.

Remark 3. (i) In the assertion of Theorem 4.1, we can freely choose the constant C. Therefore, if C is small (wrt C x̂
1 ),

then the bias becomes small.
(ii) This theorem also gives an idea on how to choose h once n or N is fixed.
(iii) Numerical examples of the application of the above results appear in Kohatsu-Higa et al. [3].

5. Application of the Malliavin–Thalmaier formula to finance

We simulate the following Delta for a digital put option under two-dimensional Black–Scholes model;
∂

∂S
(1)
0

EQ
[
e−rT 1

(
S

(1)
T � K1

)
1
(
S

(2)
T � K2

)]
,

where EQ denotes an expectation under the risk-neutral measure Q, r is the constant interest rate of riskless asset,
S

(1)
T , S

(2)
T are stock values at the maturity T , S

(1)
0 is the initial value of S

(1)
T and K1,K2 are strike prices. Parameters

are given in Fig. 2. “Delta by MT” in Fig. 1 is computed through the Malliavin–Thalmaier formula (for details see
Kohatsu-Higa et al. [3]). “Delta by FLLLT without localization” in Fig. 1 is computed by using the method of Fournié
et al. [2]. And “Delta by FD” in Fig. 1 is computed by the two-sided finite difference method with bumping size 1.
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