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Abstract

In this Note the multidimensional stability of cylindrical shock profiles and the existence of a nearby perturbed structure is
presented for the full Euler equations. This provides an example of a nonplanar structure for which the uniform Kreiss–Lopatinski–
Majda stability condition can be explicitly verified. To cite this article: N. Costanzino, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Existence des chocs topologiquement cylindrique. Dans cette Note la stabilité multidimensionnelle des chocs cylindrique et
de l’existence d’une structure perturbée voisine est présentée. Ceci fournit un exemple explicite d’une structure non planairepour
laquelle la condition de stabilité uniforme de Kreiss–Lopatinsky–Majda est satisfaite. Pour citer cet article : N. Costanzino, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In the seminal work [5,6], the nonlinear multidimensional stability of planar shocks of hyperbolic systems is proved
under a natural assumption on a related linear constant coefficient problem. This assumption, often called the uniform
Kreiss–Lopatinski–Majda condition, can be formulated in terms of nonvanishing in the right-hand complex plane of
a particular determinant called the Lopatinski determinant. This is essentially a spectral condition whose fundamental
property is that it allows one to obtain a maximal L2 estimate for the linear frozen coefficient problem, and in turn
a maximal L2 estimate for the linear variable coefficient problem via Kreiss symmetrizers and the paradifferential
calculus (cf. [7,8]). This condition has been explicitly verified in the case of planar gas dynamical shocks (cf. [5]
for the barotropic Euler equations and [4] for the full Euler equations). In particular for an ideal gas, the Lopatinski
determinant for planar shocks never vanishes in the right-half complex plane. However, if the initial shock is not
planar but rather lies on a smooth compact hypersurface M0, then the uniform Kreiss–Lopatinski–Majda condition
must be verified at each point α0 ∈ M0. In other words, for each point α0 ∈ M0, the planar shock given by Tα0M0
must satisfy the uniform Kreiss–Lopatinski–Majda condition. In this sense, stability of curved shocks reduces to the
stability of a family of planar shocks. In general it is impractical to verify the condition for every point on M0 and
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hence so far the only explicit examples of Lopatinski determinants have been for planar shocks. Here we propose an
alternative but related approach, which reduces to constructing a Lopatinski determinant for planar shocks of systems
whose fluxes depend explicitly on the spatial variables. The simplest such case, namely cylindrical shocks, is presented
here. Details of the proof in a more general setting can be found in [1]. One difference between cylindrical and planar
shocks is that unlike planar shocks where the solution is constant on either side of a perturbed planar surface, a simple
computation shows that it is not possible to construct radially symmetric solutions which are constant on either side
of r = r̄(t). However, it is possible to construct radially symmetric profiles depending on r with a discontinuity across
r = r(t). Here we focus on a setup which admits stationary radially symmetric profiles Ū (r) with a discontinuity on
r = r̄ = constant. This is achieved by considering the equations between two concentric cylinders of radius a > 0 and
b > a, with Dirichlet boundary conditions at r = a and r = b. Note that in this setup the shock surface is the infinite
cylinder, so that the precise theorem as stated in [6] does not cover this particular noncompact setting. We nevertheless
define a Lopatinski determinant for cylindrical shocks ΔS1 , and construct solutions that are small multidimensional
perturbations of the reference radial solutions Ū (r) under the condition that ΔS1 has no unstable zeroes. Just as in [2],
even though the reference solution Ū (r) is a profile, it is merely the linearization about the constant states at the right
and left of the jump discontinuity that determines the short-time existence of a nearby perturbed structure.

2. Formulation of the problem and main result

The full Euler equations in cylindrical coordinates can be written in conservative form as L(r,U) = G(r,U) where

L(r,U) = ∂tF
t (U) + ∂rF

r(U) + ∂θF
θ (r,U) + ∂zF

z(U), U ∈ R
5 (1)

and the fluxes are given by
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tr. Here P is the pressure and E = e + 1
2 |U |2 is the

energy. Note that in Fθ depends explicitly on the spatial variable r , but not on θ . The solutions we construct will be
small perturbations of a radially symmetric reference solution Ū (r). We consider (1) in

Cb
a := {

(r, θ, z): a < r < b, −π � θ � π, −∞ < z < +∞}
,

the space bounded between two concentric cylinders of radius a and b. This particular setup allows us to construct
stationary shock profiles Ū (r) to (1) which solve

d

dr
F r(Ū) = G(r, Ū), for r ∈ [a, r̄) ∪ (r̄, b],

[
F r(U)

] = 0, on r = r̄ ,

Ū |r=a = Ua and Ū |r=b = Ub.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

Stationary shock profiles solving (2) have been constructed in [3] for both the barotropic and full Euler equations. Sup-
pose that U(t, r, θ, z) = Ū (r) + U(t, r, θ, z) is smooth on either side of a codimension-one surface described by S :=
{(t, r, θ, z) ∈ R×R+ ×[−π,π]×R: r = R(t, θ, z) and that a < R(t, θ, z) < b for all (t, θ, z) ∈ [0, T ]×[−π,π]×R.
Furthermore, suppose U is smooth in {a < r < R(t, θ, z)} ∪ {R(t, θ, z) < r < b}. Then U is a distributional solution
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to (1) if and only if it is a classical solution of (1) in {a < r < R(t, θ, z)} ∪ {R(t, θ, z) < r < b} and the Rankine–
Hugoniot conditions B(r,U,dR) = 0 are satisfied on r = R(t, θ, z), where

B(r,U,dR) = ∂tR
[
F t(U)

] + 1

r
∂θR

[
Fθ(U)

] + ∂zR
[
Fz(U)

] − [
F r(U)

]
.

Hence topologically cylindrical shocks are solutions to the initial free boundary problem for (U,R) with Dirichlet
boundary conditions at r = a and r = b, namely,

L(r,U) = G(r,U) in [0, t] × Cb
a \ {

r = R(t, θ, z)
}
,

B(r,U,dR) = 0 on [0, T ] × {
r = R(t, θ, z)

}
,

U |r=a = Ua, U |r=b = Ub, U |t=0 = U0.

⎫⎪⎬
⎪⎭ (3)

In light of (2) we solve (3) with (U(t, r, θ, z),R(t, θ, z)) = (Ū(r) + U(t, r, θ, z), r̄ +R(t, θ, z)).

Theorem 2.1 (Existence of Topologically Cylindrical Shocks). For any T > 0 define C±
T := {[0, T ] × Cb

a } ∩ {±r >

R(t, θ, z)} and C0
T := {[0, T ] × Cb

a } ∩ {r = R(t, θ, z)}. Then for any initial perturbation U0 = (U0 − Ū ) ∈ Hk+1,

k > d/2 + 2, satisfying the compatibility conditions of [6] and having support away from the boundaries r = a and
r = b, there exists a T > 0 small enough such that (3) has a distributional solution (U(t, r, θ, z),R(t, θ, z)), not
necessarily unique, such that

U± − Ū ∈ Hk
(
C±

T

)
,

(
U± − Ū

)∣∣
r=R(t,θ,z)

∈ Hk+1(C0
T

)
, R ∈ Hk+1(C0

T

)
. (4)

The existence time T depends on the norm of the initial perturbation.

Sketch of proof. The solution to (3) can be constructed by Picard iteration once we get a maximal L2 estimate on the
linearization of (3) about (Ū , r̄). The estimate can be decomposed into one where the coefficients of the linearization
are away from the shock and one near the shock. The estimate away from the shock is obtained from the Friedrichs
theory for smooth coefficients since (1) has a Friedrichs symmetrizer. For the estimate near the shock, we define the
constant states U± as U± = limr→r̄± Ū (r) so that since (1) is written in conservative form it is clear that

Ushock :=
{

U−, r ∈ (a, r̄),

U+, r ∈ (r̄, b)
(5)

satisfies (3) if the source term is set to zero and we ignore the boundary conditions. Hence after mapping (3) to a
fixed-boundary transmission problem, dropping the geometric source term G(r,U), and linearizing about Ushock, we
are lead to the constant coefficient problem L(r̄,U±)U = 0, B(U±, r̄)(U,R) = 0 where

L(r̄,U±)U := ∂tU + Ar(U±)∂rU + 1

r̄
Aθ (U±)∂θU + Az(U±)∂zU,

B(U±, r̄)(U,R) = ∂tR
[
F t(Ushock)

] + 1

r̄
∂θR

[
Fθ(Ushock)

] + ∂zR
[
Fz(Ushock)

] − [
Ar(Ushock)U

]
. (6)

The main idea here is that an estimate on the system obtained by freezing coefficients at the shock location will yield an
estimate for the variable coefficient problem for coefficients which are small perturbations of the frozen coefficients.
Taking the Laplace–Fourier transform in the tangential variables (t, θ, z) yields the system of ordinary differential
equations in the radial variable r ,

∂r Û = −H±(λ, ηθ , ηz;κ)Û = −(
Ar(U±)

)−1{
λAt(U±) + iκηθA

θ (U±) + iηzA
z(U±)

}
Û (7)

where the tangential frequencies (λ, ηθ , ηz) as well as κ are now parameters. Here κ := 1
r̄

is the curvature of the
underlying unperturbed stationary cylindrical shock satisfying (2). The frequencies are such that λ ∈ C, ηθ ∈ Z,
ηz ∈ R. Define a rescaled angular frequency η̄θ := κηθ and set Σ1 := {(λ, η̄θ , ηz) ∈ C × Z × R: �λ > 0}. The
uniform Kreiss–Lopatinski–Majda condition is now phrased in terms of nonexistence of solutions to (7) with �λ > 0
through nonvanishing of the Lopatinski determinant on Σ1.

From [3] Ushock has Lax shock structure so we can proceed to define a Lopatinski determinant as

ΔS1(λ, η̄θ , ηz) = det
(
b(λ, η̄θ , ηz), r

1−(λ, η̄θ , ηz), r
2−(λ, η̄θ , ηz), r

3−(λ, η̄θ , ηz), r
4−(λ, η̄θ , ηz)

)
(8)
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where b = λ[F t (Ushock)] + iη̄θ [Fθ(Ushock)] + iηz[Fz(Ushock)] and {rj
−}4

j=1 span appropriate stable/unstable sub-
spaces associated to (7) (cf. [1] for details). Then the Kreiss–Lopatinski–Majda condition is equivalent to requiring
ΔS1(λ, η̄θ , ηz) �= 0 for every (λ, η̄θ , ηz) ∈ Σ1. �
Lemma 2.2 (Lopatinski Determinant for Cylindrical Shocks). Let ΔS1(λ, η̄θ , ηz) be the Lopatinski determinant asso-
ciated to the shock discontinuity of the radially symmetric profile Ū (r). Then the zero set of ΔS1 on Σ1 coincides with
the zero set of ΔE , where ΔE is the Lopatinski determinant for a planar gas dynamical extreme Euler shock computed
in [4]. In particular for an ideal gas ΔS1 does not vanish in Σ1.

From Lemma 2.2 we can proceed as in [2,6–8] with appropriate modifications due to the discrete nature of the
tangential frequency η̄θ . Furthermore initial data is taken to have support away from the boundaries r = a and r = b

so that by finite speed of propagation, the boundary conditions will be satisfied on [0, T ] for T small enough.
Finally we remark that the stability conditions are phrased in terms of hydrodynamic quantities such as Mach

number and compression ratio, and since these depend on the shock location r̄ of the radial profile Ū (r), the nonlinear
stability for any particular gas law (other than ideal gas) ostensibly may differ in the cylindrical case from that of the
planar case.
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