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Abstract

We solve Gromov’s dimension comparison problem on Carnot groups equipped with a Carnot–Carathéodory metric and an
adapted Euclidean metric. The proofs use sharp covering theorems relating optimal mutual coverings of Euclidean and Carnot–
Carathéodory balls, and elements of sub-Riemannian fractal geometry associated to horizontal self-similar iterated function systems
on Carnot groups. To cite this article: Z.M. Balogh et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le problème de dimension comparaison de Gromov sur les groupes de Carnot. Nous présentons la solution du problème de
dimension comparaison de Gromov sur les groupes de Carnot muni d’une métrique de Carnot–Carathéodory et une métrique adap-
tée Euclidienne. Les preuves uilisent des théorèmes de couvrir précises entre des boules Euclidienne et de Carnot–Carathéodory.
Nous utilisons aussi des elements de la géométrie fractale sous-Riemanienne associée des fonctions itérées sur les groupes de
Carnot. Pour citer cet article : Z.M. Balogh et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

Carnot groups are simply connected nilpotent Lie groups with graded Lie algebra equipped with a left-invariant
metric of sub-Riemannian type. They arise as ideal boundaries of non-compact rank one symmetric spaces, and
serve as both examples of, and local models at regular points for, general sub-Riemannian (Carnot–Carathéodory)
manifolds. In his comprehensive survey on intrinsic Carnot–Carathéodory metric geometry [6], Gromov posed the
following problem (see Exercise 0.6.C in [6]):
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Problem 1. Let (M,H, g0) be a sub-Riemannian manifold. State and prove sharp comparison results between the
Carnot–Carathéodory and Euclidean Hausdorff dimensions of subsets of M .

More precisely, let g be a Riemannian metric on M which tames g0, and define functions α, β on the power set
P(M) of M as follows: α(A) = dim(M,g) A and β(A) = dim(M,g0) A, where dim(M,g) denotes Hausdorff dimension
in the metric space (M,g). Determine the range of � = (α,β) :P(M) → R

2.

Problem 1 asks for a measure-theoretic description of the discrepancy between the sub-Riemannian metric g0 and
any taming Riemannian metric g. Put another way, it asks which Riemannian α-dimensional subsets of M are most
nearly horizontal (β is smallest for fixed α) and which are most non-horizontal (β is largest for fixed α). In this note,
we describe our solution of Problem 1 in the class of Carnot groups. Full details of the proofs as well as additional
results in the context of jet spaces are contained in [4]. This work extends our previous results from [2,3,1] in the
particular setting of the Heisenberg group.

Let G be a Carnot group of dimension at least two with graded Lie algebra g = v1 ⊕ · · · ⊕ vs such that [v1,vi] =
vi+1, i = 1, . . . , s − 1, and [v1,vs] = 0. We equip v1 with a left-invariant inner product and denote by dcc the standard
sub-Riemannian Carnot–Carathéodory metric defined using this inner product. The Euclidean space underlying G has
dimension N = ∑s

i=1 mi while the homogeneous dimension of G is Q = ∑s
i=1 imi , where dimvi = mi . Our main

result is the following statement:

Theorem 1.1. Let G be a Carnot group as above. Denote by α = dimE A, resp. β = dimcc A, the Euclidean, resp.
Carnot–Carathéodory, Hausdorff dimension of a set A ⊂ G. Then

β−(α) � β � β+(α), (1)

where β± : [0,N ] → [0,Q] are defined as follows.
Let m0 = ms+1 := 0. Let l ∈ {0, . . . , s − 1} be the integer satisfying

∑l
i=0 mi < α �

∑l+1
i=0 mi , then

β−(α) =
l∑

i=0

imi + (l + 1)

(
α −

l∑
i=1

mi

)
. (2)

Let q ∈ {1, . . . , s} be the integer satisfying
∑s+1

i=q mi < α �
∑s+1

i=q−1 mi , then

β+(α) =
s+1∑
i=q

imi + (q − 1)

(
α −

s+1∑
i=q

mi

)
. (3)

Let us comment on the formulae for β−(α) and β+(α). Observe that the first component
∑l

i=0 imi in the expression
for β−(α) represents the integer part of α weighted against the lowest possible strata in the Lie algebra stratification
of G. The second component (l + 1)(α − ∑l

i=1 mi) is the fractional part of α with weight l + 1. The function β+ has
a dual interpretation using highest possible strata.

The sharpness of Theorem 1.1 is demonstrated in our next theorem:

Theorem 1.2. For all 0 � α � N and β−(α) � β � β+(α) there exists a set Aα,β ⊂ G with (α,β) = (dimE Aα,β,

dimcc Aα,β).

In Carnot groups, the underlying Euclidean metric plays the role of taming Riemannian metric. Gromov’s prob-
lem thus admits the solution �(P(G)) = {(α,β) ∈ [0,N] × [0,Q]: β−(α) � β � β+(α)}. Note that since β± are
monotone increasing and piecewise linear, the planar region �(P(G)) is a convex polygon. See Example 1 for an
explicit description in a specific step three Carnot group, the Engel group.

2. Sketch of the proofs

Denote by Hα
E , resp. Hβ

cc the α-, resp. β-dimensional Hausdorff measures with respect to the Euclidean, resp. CC,
metric. Theorem 1.1 is a consequence of the following inequalities relating these measures:
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Proposition 2.1. Let 0 � α � N and β±(α) be as above and let b > 0. There exists L = L(G, b) so that

Hβ+(α)
cc (A)/L � Hα

E(A) � LHβ−(α)
cc (A) (4)

for all A ⊂ Bcc(0, b), where Bcc(0,R) denotes the CC ball of radius R centered at the identity 0 ∈ G.

Proposition 2.1 is established with the aid of the following ball covering lemma:

Lemma 2.2. (a) For every bounded set K ⊂ G and integer q ∈ {2, . . . , s + 1} there exists a constant M = M(q,K)

such that every Euclidean ball BE(p, r) with center p ∈ K and radius 0 < r < 1 can be covered by finitely many CC

balls {Bcc(pj , r
1

q−1 )}nj=1 with n � M/rλ1(q), where λ1(q) := 1
q−1

∑s+1
i=q imi − ∑s+1

i=q mi .
(b) For every bounded set K ⊂ G and integer l ∈ {0, . . . , s − 1} there exists a constant M = M(l,K) such that

every CC ball Bcc(p, r) with center p ∈ K and radius 0 < r < 1 can be covered by finitely many Euclidean balls
{BE(pj , r

l+1)}nj=1 with n � M/rλ2(l), where λ2(l) := (l + 1)
∑l

i=0 mi − ∑l
i=0 imi .

Observe that β−(α) = (l + 1)α − λ2(l) and β+(α) = (q − 1)(α + λ1(q)), where l and q are as in Theorem 1.1.
Parts (a) and (b) of Lemma 2.2 imply the left and right hand inequality in (4) respectively. This concludes the proof
of Proposition 2.1 which implies Theorem 1.1.

To prove Theorem 1.2 we note that it suffices to construct sets Aα,β with dimE Aα,β = α and dimcc Aα,β = β for
0 � α � N and only for β = β±(α). This follows from the monotonicity of Hausdorff dimension and the monotonicity
of the functions β±.

A set A with dimcc A = β+(dimE A) tends to be as vertical as possible in that it lies in the direction of higher strata
in the Lie algebra. In contrast, dimcc A = β−(dimE A) means that A is as horizontal as possible; A lies in the direction
of lower strata. Vertical sets are relatively easy to find; horizontal sets are more challenging. The difficulty stems from
the non-integrability of the horizontal distribution v1. Horizontal sets in two step groups were first constructed by
Strichartz [7] as L∞ graphs. Our approach realizes such sets via fractal geometry, as invariant sets for CC self-similar
iterated function systems (IFS).

Proposition 2.3. Let {F1, . . . ,FM} be an IFS of contracting similarities of G with contraction ratios r1, . . . , rM , i.e.,
dcc(Fi(x),Fi(y)) = ridcc(x, y) for all x, y ∈ G and 1 � i � M . Let fi : Rm1 → R

m1 denote the first layer projection
of Fi , and assume that the IFS {f1, . . . , fM} satisfies the open set condition. Let α ∈ (0,m1] be the similarity dimension
for the system {f1, . . . , fM}, e.g., α is the unique solution to the equation

∑M
i=1 rα

i = 1. Then there exists L > 0
(depending only on α and G) so that

0 < Hα
cc(K)/L � Hα

E(K) � LHα
cc(K) < ∞,

where K denotes the invariant set for the IFS {F1, . . . ,FM}. In particular, dimE K = dimcc K = α.

An interesting corollary of Proposition 2.3 is a formula for calculating the dimensions of invariant sets in the
Euclidean space underlying G for a certain class of non-linear IFS, which are not necessarily even generated by
Euclidean contractions. Indeed, by the Baker–Campbell–Hausdorff formula, self-similarities of G are polynomial
maps of degree s − 1. In the Heisenberg group the relevant IFS are generated by affine maps. Dimension formulae for
Euclidean self-affine sets have been obtained by Falconer [5]. The following example, the Engel group, is a step three
group where the similarities are quadratic polynomials:

Example 1. We model the Engel group with the polynomial group law on R
4 given by (x1, x2, x3, x4) �

(y1, y2, y3, y4) = (x1 + y1, x2 + y2, x3 + y3 + x2y1, x4 + y4 + x3y1 + 1
2x2y

2
1). This is a step three Carnot group

of homogeneous dimension Q = 7. The anisotropic dilation δs(x1, x2, x3, x4) = (sx1, sx2, s
2x3, s

3x4) is a CC self-
similarity with scaling ratio s > 0. Consider the IFS {F1,F2,F3,F4} given by F1(x) = δ1/2(x), F2(x) = δ1/2(p1 �x),
F3(x) = δ1/2(p2 � x), and F4(x) = δ1/2(p1 � p2 � x), where p1 = (1,0,0,0), p2 = (0,1,0,0). It is clear that pro-
jection to the lowest stratum R

2 gives a Euclidean IFS satisfying the open set condition whose invariant set is the
unit square [0,1]2. Denoting by Q the invariant set of {F1,F2,F3,F4}, Proposition 2.3 gives dimcc Q = dimE Q = 2.
Note that F3, F4 are quadratic maps of R

4, e.g.,

F4(x1, x2, x3, x4) = (x1/2 + 1/2, x2/2 + 1/2, x1/4 + x3/4, x4/8 + x2/16).
1
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Fig. 1. Dimension plot in the Engel group.

Fig. 1. Plot des dimensions dans la groupe d’Engel.

The full range of Euclidean vs. CC dimensions of subsets of the Engel group is realized by the functions β± : [0,4] →
[0,7], β+(α) = min{3α,2α + 1, α + 3} and β−(α) = max{α,2α − 2,3α − 5}; see Fig. 1.

Proposition 2.3 generates horizontal sets A in the lowest stratum (0 � α � m1). Note that in this range β−(α) = α.
To obtain horizontal sets in higher strata (m1 � α � N ) as required by Theorem 1.2 we perform an iterative construc-
tion starting from a horizontal set Am1 of dimension m1 and taking successive Carnot products with Cantor-type sets
lying in the higher strata. We refer to [3, Theorem 4.1] for a description of the construction in the Heisenberg group.

The Heisenberg and Engel groups model the jet spaces J 1(R,R) and J 2(R,R). Every jet space J k(Rm,R
n) can

be equipped with a Carnot group law [8]. We introduce a new Carnot group model for jet spaces in which CC self-
similarities are affine maps in the underlying Euclidean geometry, and extend work of Falconer [5] (Euclidean space)
and the first two authors [3] (Heisenberg group) on almost sure formulae for CC and Euclidean dimensions of invariant
sets for generic representatives in families of self-affine IFS. See Theorems 1.18, 1.19 in [3] for the Heisenberg group
case; full details in general jet spaces are in [4].
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