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Abstract

Let S ⊂ R
2 be a bounded Lipschitz domain and set W

2,2
iso (S;R

3) = {u ∈ W2,2(S;R
3): (∇u)T (∇u) = Id a.e.}. Under an addi-

tional regularity condition on the boundary ∂S (which is satisfied if it is piecewise continuously differentiable) we prove that the
W2,2 closure of W

2,2
iso (S;R

3) ∩ C∞(S̄;R
3) agrees with W

2,2
iso (S;R

3). To cite this article: P. Hornung, C. R. Acad. Sci. Paris,
Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximation de W2,2 par des immersions isométriques. Soient S ⊂ R
2 un domaine lipschitzien borné et W

2,2
iso (S;R

3)

l’ensemble W
2,2
iso (S;R

3) = {u ∈ W2,2(S;R
3): (∇u)T (∇u) = Id p.p.}. Sous une hypothèse supplémentaire de régularité sur la

frontière ∂S (qui est satisfaite dans le cas où ∂S est continument différentiable par morceaux), nous prouvons que l’adhérence
W2,2 de W

2,2
iso (S;R

3) ∩ C∞(S̄;R
3) est W

2,2
iso (S;R

3). Pour citer cet article : P. Hornung, C. R. Acad. Sci. Paris, Ser. I 346
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note we study the question whether isometric immersions u from a two-dimensional domain S into R
3 that

belong to the Sobolev class W 2,2 can be approximated by isometric immersions which are smooth up to the boundary
of S. This is an approximation result for Sobolev mappings which respects nonconvex constraints on the derivatives,
see e.g. [1] for a broader perspective onto such problems. Besides this intrinsic interest, our main motivation arises
from nonlinear plate theory, where W 2,2 isometric immersions form the natural class of admissible functions. For a
bounded domain S ⊂ R

2 we define W
2,2
iso (S;R

3) = {u ∈ W 2,2(S;R
3): (∇u)T (∇u) = Id a.e.}. This class agrees with

the set of finite energy deformations in Kirchhoff’s plate theory as derived in [3,4]. The density result presented here
is a key ingredient in the rigorous derivation of related thin-film theories from nonlinear three dimensional elasticity,
compare e.g. the recent work [2]. In the derivation of Kirchhoff’s plate theory given in [9,10], the author raised the
question whether one can approximate W 2,2 isometric immersions by smooth ones or not, and he outlined a proof for
the upper bound (alternative to that in [4]) provided such an approximation result is true.
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The problem studied here was previously addressed in [8], where it is shown that if S ⊂ R
2 is convex and has a

smooth boundary then there are approximating isometric immersions which are of class C2 in the interior. Both in
that work and here the developability theorem from [6] plays a crucial role. It states that, away from planar points,
the image of a W 2,2 isometric immersion is a developable surface. (Strictly speaking, his result applies to W

2,∞
iso , but

essentially the same proof also works in the W
2,2
iso case, see [8].) Thus the level sets of ∇u provide a natural fibration

(called ruling in the sequel) of the domain into straight line segments (β−, β+) ⊂ S with endpoints β−, β+ in ∂S.
The smoothing process will change the geometry of these lines. But to obtain an approximating isometric im-

mersion which is well defined on the whole domain S the modified lines should also not intersect within S. If the
perturbation is small, then the modified lines will only intersect near the boundary ∂S. If S is convex (or strictly star-
shaped) then its closure is contained in dilated versions of S, so dilating the domain together with the modified ruling
results in an isometric immersion that is well defined on S. Unfortunately, generic domains lack this dilation property,
so here a totally different approach is necessary: One has to subdivide the domain into pieces compatible with the
ruling and construct local approximations on each piece. Each of them must satisfy prescribed boundary conditions
on the parts of the boundary which have been created by the subdivision process. Since, due to developability, iso-
metric immersions are rather rigid, it is a priori not clear whether the class of W 2,2 isometric immersions satisfying
these boundary conditions will contain a smooth isometric immersion at all. However, we show that it even contains
smooth isometric immersions that can be extended as an isometric immersion to a larger domain. Notice that even
after restricting to simply connected subdomains, nonconvexity still causes further effects which are not seen in the
convex case. They are related to the fact that the rulings may intersect the boundary tangentially. A global difficulty
caused by holes in the domain is that the set where u is locally affine is geometrically much less constrained than in
the convex case and must therefore be handled by more sophisticated topological arguments. In this Note we introduce
some important notions and give a survey over the main ideas. Detailed proofs will be published elsewhere [5].

A bounded Lipschitz domain S ⊂ R
2 is said to satisfy condition (∗) if there is a closed subset Σ ⊂ ∂S with

H1(Σ) = 0 such that the outer unit normal ν̂ exists and is continuous on ∂S \ Σ . Our main result reads as follows:

Theorem 1. Let S ⊂ R
2 be a bounded Lipschitz domain satisfying condition (∗). Then the W 2,2 closure of

W
2,2
iso (S;R

3) ∩ C∞(S̄;R
3) agrees with W

2,2
iso (S;R

3).

2. Quasi-developable mappings

We denote by S ⊂ R
2 a bounded Lipschitz domain. For μ ∈ S1 and x ∈ S we denote by [x]μ the connected

component of (x + spanμ) ∩ S that contains x. A mapping f from a subset X ⊂ S into R
P is called developable if

for every point x ∈ X there exists qf (x) ∈ S1, unique up to a sign, such that f is constant on [x]qf (x), and [x]qf (x) ∩
[y]qf (y) �= ∅ implies [x]qf (x) = [y]qf (y). The mapping qf is called a ruling for f . If X is a domain with X̄ ⊂ S then
qf can be chosen to be Lipschitz on X. In the sequel we write [x] instead of [x]qf (x). For f ∈ C0(S;R

P ), P ∈ N,
P � 2, we introduce Cf = {x ∈ S: f is constant in a neighbourhood of x}. A mapping f ∈ C0(S;R

P ) is called quasi-
developable if f |S\Cf

is developable. From now on f denotes such a mapping. By means of a nontrivial analysis [5]
of the set Cf one can show that for the purpose of proving Theorem 1 one may assume without loss of generality that
Cf and S \ Cf consist of finitely many connected components.

For x ∈ S and μ ∈ S1 we define ν(x,μ) = inf{θ > 0: x + θμ /∈ S}. Let Γ ∈ W 2,∞([0, T ];S) be arclength-
parametrized, set N = (Γ ′)⊥, denote by κ = Γ ′′ · N the curvature of Γ and define the Frénet frame R =
(Γ ′,N)T . The Frénet equations read R′ = κ(e1 ⊗ e2 − e2 ⊗ e1)R. For t ∈ [0, T ] and ∗ ∈ {+,−} set s∗

Γ (t) =
∗ν(Γ (t),∗N(t)) and β∗

Γ (t) = Γ (t) + s∗
Γ (t)N(t). Abusing notation, set [Γ (t)] = [Γ (t)]N(t). For J ⊂ [0, T ] we

introduce the notation [Γ (J )] = ⋃
t∈J [Γ (t)]. We will assume without loss of generality that T −1 > ‖κ‖L∞(0,T ),

so Γ is injective. The curve Γ is called simple if there are two Lipschitz functions α+, α− in local coordi-
nate systems such that β∗

Γ ([0, T ]) ⊂ graphα∗ ⊂ ∂S for ∗ = +,−. For simple curves we introduce the sets D∗
Γ =

{t ∈ [0, T ]: (α∗)′((βΓ )1(t)) exists and N2(t) = (α∗)′((βΓ )1(t))N1(t)} where the closure of [Γ (t)] is tangential to ∂S

(the subindices refer to the local coordinates of graphα∗). We say that Γ is transversal on a set J ⊂ [0, T ] if
(D+

Γ ∪ D−
Γ ) ∩ J = ∅. The curve Γ is called admissible if the line segments (β−

Γ (t), β+
Γ (t)) are disjoint for different t .

One can show [5] that if S is simply connected and Γ is simple, then Γ is admissible if and only if 1 − s∗(t)κ(t) � 0
for ∗ = +,− and a.e. t ∈ (0, T ), thus providing a local criterion for admissibility. We say that Γ is strictly admissible
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if there exists δ > 0 such that 1 − s∗(t)κ(t) � δ for ∗ = +,− and a.e. t . If f is developable in a neighbourhood of
Γ ([0, T ]) ⊂ S and if Γ solves the ODE Γ ′(t) = −q⊥

f (Γ (t)) then Γ is called an f -integral curve.

3. Modifying W 2,2 isometric immersions

The above discussion is linked to Theorem 1 by the developability theorem presented in [6,8,7], which says that if
S ⊂ R

2 is a bounded Lipschitz domain and u ∈ W
2,2
iso (S;R

3) then ∇u ∈ C0(S;R
3×2) is quasi-developable. (Continuity

in the interior is shown in [7], where it is attributed to Kirchheim.)
From now on we fix a bounded Lipschitz domain S ⊂ R

2 that satisfies condition (∗) and we fix u ∈ W
2,2
iso (S;R

3)

and a simple ∇u-integral curve Γ ∈ W 2,∞([0, T ];S). Following [8] we introduce the space curve γ = u ◦ Γ and we
set v = (∇u ◦ Γ )N and n = γ ′ ∧ v. One can prove [5] that r := (γ ′, v, n)T is in W 1,2((0, T );SO(3)). It satisfies

r ′ = (
κ(e1 ⊗ e2 − e2 ⊗ e1) + κn(e1 ⊗ e3 − e3 ⊗ e1)

)
r, (1)

where κn := γ ′′ ·n ∈ L2(0, T ), and
∫
[Γ (0,T )] |∇2u(x)|2 dx = ∫ T

0 κ2
n(t)(

∫ s+
Γ (t)

s−
Γ (t)

1
1−sκ(t)

ds)dt . The integrand in parenthe-

ses is bounded from below by a positive constant, so if u ∈ W 2,2 then κn ∈ L2. Conversely, given Γ̄ ∈ W 2,∞([0, T̄ ];S)

and κ̄n ∈ L2(0, T̄ ) one can define a mapping (Γ̄ , κ̄n) by setting (Γ̄ , κ̄n)(Γ̄ (t) + sN(t)) = γ̄ (t) + sv(t) for t ∈ (0, T ),
s ∈ R. If Γ̄ is strictly admissible then (Γ̄ , κ̄n) is well defined and lies in W

2,2
iso ([Γ̄ (0, T̄ )];R

3), see [5]. With this
notation we have u|[Γ (0,T )] = (Γ, κn). We write (Γ, κn) ∼ (Γ̄ , κ̄n) provided [Γ (0, T )] = [Γ̄ (0, T̄ )] and (Γ, κn)

and (Γ̄ , κ̄n) agree up to the first derivatives on S ∩ ∂[Γ (0, T )]. One can prove [5]: If Γ and Γ̄ are transversal, if
γ̄ (0) = γ (0), r̄(0) = r(0), Γ̄ (0) = Γ (0), R̄(0) = R(0) and if

γ̄ (T̄ ) − γ (T ) = (
v(T ) ⊗ N(T )

)(
Γ̄ (T̄ ) − Γ (t)

)
, r̄(T̄ ) = r(T ), (2)

Γ̄ (T̄ ) − Γ (T ) ‖ N(T ), R̄(T̄ ) = R(T ) (3)

are satisfied then (Γ, κn) ∼ (Γ̄ , κ̄n). (The frame r̄ is defined by solving (1) with κ̄ = Γ̄ ′′ · N̄ and κ̄n instead of κ

and κn, respectively. We also set γ̄ ′ := r̄T e1.) The transversality assumption is used to ensure that S ∩ ∂[Γ (0, T )] =
[Γ (0)] ∪ [Γ (T )]; compare Fig. 1 (right).

Lemma 2 (Main lemma). Let (Γ, κn) ∈ W
2,2
iso ([Γ (0, T )];R

3) and let δ > 0. Then there exist δ′ > 0 and (Γ̄ , κ̄n)

such that (Γ̄ , κ̄n) ∼ (Γ, κn), (Γ̄ , κ̄n) ∈ C∞
iso([Γ (0, T )];R

3), (Γ̄ , κ̄n) is affine on Bδ′(S ∩ ∂[Γ (0, T )]) and ‖(Γ̄ , κ̄n) −
(Γ, κn)‖W 2,2([Γ (0,T )];R3) < δ.

Fig. 1. Left: The domain S with some rulings. It is subdivided into simply connected subdomains like the dashed one. Right: Zoom-in of the
dashed region from the left. The bottom line is Γ , the bold wavy line is part of the boundary ∂S. Some rulings intersect tangentially, whence
S ∩ ∂[Γ (0, T )] �= [Γ (0)] ∪ [Γ (T )].
Fig. 1. Gauche : Le domaine S avec quelques lignes de niveau de ∇u. Il est subdivisé en sous-domaines simplement connexes comme celui
hachuré. Droite : Zoom dans la région hachurée. La ligne du bas est Γ , la ligne ondulée est une partie de la frontière ∂S. Quelques lignes de niveau
intersectent ∂S tangentiellement, de sorte que S ∩ ∂[Γ (0, T )] �= [Γ (0)] ∪ [Γ (T )].
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The proof consists of three key steps. A nontrivial argument [5] allows one to assume without loss of generality
that Γ is transversal on [0, T ]. Step 1. Using condition (∗), by a nontrivial procedure one modifies (Γ, κn) such
that the resulting mapping (Γ̄ , κ̄n) is transversal and strictly admissible, while still being W 2,2-close to (Γ, κn) with
(Γ̄ , κ̄n) ∼ (Γ, κn). (In [5] we provide an example showing that before modification Γ need not be strictly admissible
on any interval.) It turns out [5] that transversality plus strict admissibility imply that (Γ̄ , κ̄n) can be isometrically
extended to a larger domain, so now there is room to perturb the ruling without spoiling admissibility. To avoid heavy
notation let us summarize Step 1 by assuming that (Γ, κn) is transversal and strictly admissible. Step 2. By carefully
mollifying the curvatures κ and κn and defining the new curves by integration, one obtains a smooth approximation
to (Γ, κn). It is well defined thanks to Step 1, but the boundary conditions will be spoiled. Step 3. One shows that if Γ is
strictly admissible and transversal then arbitrary L2-small perturbed versions κ̂ε , κ̂ε

n (in the present case the mollified
versions) of κ , κn can be ‘corrected’ by adding ϕ,ψ ∈ C∞

0 such that the curvatures κ̂ε + ϕ, κ̂ε
n + ψ define a mapping

(Γ̄ , κ̄n) that is W 2,2-close to the original one, is again strictly admissible and moreover satisfies (Γ̄ , κ̄n) ∼ (Γ, κn).
The proof of this statement is based on an implicit function argument that interprets (2), (3) as isoperimetric constraints
on κ̄ and κ̄n; in fact it also involves a reparametrization which we have omitted here for simplicity. See [5] for the
details.

To prove Theorem 1 one shows (by means of a nontrivial argument [5]) that up to a small boundary layer, on
each of the finitely many (see Section 2) connected components of S \ C∇u the developable mapping ∇u can be
fully described by a finite number of simple ∇u-integral curves Γ (i) ∈ W 2,∞([0, T (i)];S). Applying Lemma 2 to
the restrictions u|[Γ (i)(0,T (i))] = (Γ (i), κ

(i)
n ) and subsequently gluing together the resulting smooth pieces we obtain a

mapping with the properties stated in Theorem 1.
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