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Abstract

The Neyman–Pearson fundamental lemma is generalized under g-probability. With convexity assumptions, a sufficient and
necessary condition which characterizes the optimal randomized tests is obtained via a maximum principle for stochastic control.
To cite this article: S. Ji, X.Y. Zhou, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Lemme de Neyman–Pearson généralisé pour les g-espérances. Le lemme fondamental de Neyman–Pearson est généralisé
au cas de g-probabilités. Sous des hypothèses de convexité, une condition suffisante et nécessaire caractérisant le test randomisé
optimal est obtenue au moyen du principe du maximum dans le cadre du contrôle stochastique. Pour citer cet article : S. Ji, X.Y.
Zhou, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is well known that the Neyman–Pearson fundamental lemma gives the most powerful statistical tests for simple
hypothesis testing problems. However, to the best of our knowledge little is known about the nonlinear probability
counterpart except Huber and Strassen’s work [10] for 2-alternating capacities. Recently some special capacities are
found to be non-2-alternating in the context of modeling super- and sub-pricing of contingent claims in an incomplete
financial market (see [2,3]), and such capacities can be described by the so-called g-probability which is introduced
through a nonlinear mathematical expectation, i.e., g-expectation by Peng [13]. Thus, it is of interest to study the
simple hypothesis testing under g-probability.
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In this Note, with convexity assumptions, a sufficient and necessary condition which characterizes the optimal
randomized test is obtained by using a stochastic maximum principle approach. Two examples are given to show the
statistical interpretation of our results as well as an application to a shortfall risk minimization problem.

2. Problem formulation

Let W(·) be a standard d-dimensional Brownian Motion defined on a complete probability space (Ω,F ,P ). The
information structure is given by a filtration F = {Ft }0�t�T , which is the augmented σ -algebra generated by the
Brownian Motion W(·). Let FT = F and g = g(y, z, t): R1 × R1×d × [0, T ] → R1 be a function satisfying

(H1) g is uniformly Lipschitz with respect to y, z;
(H2) ∀(y, z) ∈ R1 × R1×d , g(y, z, t) is continuous in t and

∫ T

0 g2(0,0, t)dt < ∞;
(H3) ∀(y, t) ∈ R1 × [0, T ], g(y,0, t) ≡ 0.

Denote by M2(0, T ;Rn), the space of all Ft -adapted process x(·) with values in Rn, such that E
∫ T

0 |x(t)|2 dt < ∞.

Let L2(Ω,FT ,P ) be the set of all FT -measurable random variable ξ with value in R1, such that E|ξ |2 < ∞.
Under assumptions (H1)–(H3), for each ξ ∈ L2(Ω,F ,P ), the following BSDE

yt = ξ +
T∫

t

g(ys, zs, s)ds −
T∫

t

zs dWs (1)

has a unique solution (y, z) ∈ M2(0, T ;R1) × M2(0, T ;R1×d) (see [5]).
Peng [13] introduced the notion of g-expectation and g-probability as follows:

Definition 2.1. Suppose g satisfies (H1)–(H3). Given ξ ∈ L2(Ω,F ,P ), let (y, z) be the solution of (1). The g-
expectation of ξ is defined by Eg[ξ ] ≡ y0.

Definition 2.2. Suppose g satisfies (H1)–(H3). Given A ∈ F , the g-probability of A is defined by Pg[A] = Eg[1A].

We call g the generating function of the g-expectation and the g-probability. Since g-expectation or g-probability
depends on the choice of the generating function g, g can be regarded as the parameter of such a nonlinear probability
measure. We denote a class of g-probability measures over (Ω,F) by PG where G is a given class of generating
functions.

Note that g-expectation and g-probability can be defined only via BSDE. Thus, in the following, we introduce
hypothesis testing in the BSDE framework. Let G0 ⊂ G and assume that both G0 and G\G0 are nonempty. The class
of g-probability measures PG or G is called the set of admissible hypotheses, and PG0 or G0 (resp. PG\G0 or G \G0)
is called the null hypothesis H0 (resp. alternative hypothesis H1). If G0 (resp. G \ G0) consists of only one element,
then it is called simple; otherwise composite. In this note, we shall test a simple null hypothesis H0: g = g1 versus a
simple alternative H1: g = g2, where g1 (resp. g2) is the only element in G0 (resp. G1). It is worth pointing out that,
in the classical case the simple hypothesis testing problem is investigated by introducing the randomized test (see [4]
or [9]). In our context, we give the corresponding definition as follows:

Definition 2.3. A randomized test is an F -measurable random variable ξ :Ω → [0,1]. ξ is called a randomized test
for the simple hypothesis H0: g = g1 versus a simple alternative H1: g = g2 with a level of significance α (0 � α � 1),
if Eg1[ξ ] � α.

A randomized test ξ with significance level α can be interpreted as follows: for an observation, i.e. a sample ω

from the sample space Ω , the hypothesis H0 is rejected (respectively accepted) with probability ξ(ω) (respectively
1 − ξ(ω)); hence Eg1[ξ ] � α guarantees that the correct hypothesis g = g1 is (wrongly) rejected with an “average” of
at most α. Thus, in the context of the Neyman–Pearson fundamental lemma (see [4] or [9]), Eg1[ξ ] represents Type I
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error for ξ , i.e. rejecting g1 when it is true while Eg2[1 − ξ ] represents Type II error for ξ , i.e., rejecting g2 when it is
true.

Set L = {ξ | ξ ∈ L2(Ω,F ,P ) and 0 � ξ � 1}. Then for a given acceptable significance level α ∈ (0,1), our prob-
lem is to find an optimal randomized test ξ∗ which solves the following optimization problem:

inf
ξ∈L

Eg2[1 − ξ ],

subject to Eg1[ξ ] � α. (2)

3. Main results

We assume

(H4) g1 and g2 are continuously differentiable in (y, z) and their derivatives are bounded;
(H5) g1 and g2 are convex with respect to (y, z).

Theorem 3.1. Suppose that assumptions (H2)–(H5) are satisfied. Then there exists a randomized test which attains
the minimum of problem (2).

Let ξ∗ be optimal to (2) with (y∗
1 (·), z∗

1(·)) and (y∗
2 (·), z∗

2(·)) being the corresponding solutions of (1). Denote the
derivatives gi

y(y
∗
i (t), z∗

i (t), t) (resp. gi
z(y

∗
i (t), z∗

i (t), t)) by gi
y(t) (resp. gi

z(t) ) for i = 1,2.

Theorem 3.2. Suppose that assumptions (H2)–(H5) are satisfied. A randomized test ξ∗ is optimal if and only if there
exist a constant v > 0 and a random variable b ∈ L such that

ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )} and Eg1[ξ∗] = α (3)

where m(·) and n(·) are the solutions of the following adjoint equations⎧⎪⎨
⎪⎩

dm(t) = g1
y(t)m(t)dt + g1

z (t)m(t)dW(t),

dn(t) = g2
y(t)n(t)dt + g2

z (t)n(t)dW(t),

m(0) = 1, n(0) = 1.

(4)

Remark. We prove the above theorem via a maximum principle for a certain stochastic control problem. The max-
imum principle is derived by a terminal perturbation technique which is introduced in [6] and developed in [11]
and [12]. Furthermore, ξ∗ can be obtained by solving the following forward backward system.

Theorem 3.3. Suppose that (H2)–(H5) hold. Then there exist a positive number v and a random variable b ∈ L such
that the following forward–backward system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm(t) = g1
y(y1(t), z1(t), t)m(t)dt + g1

z (y1(t), z1(t), t)m(t)dW(t),

−dy1(t) = g1(y1(t), z1(t), t)dt − z1(t)dW(t),

m(0) = 1, y1(T ) = ξ∗,
dn(t) = g2

y(y2(t), z2(t), t)n(t)dt + g2
z (y2(t), z2(t), t)n(t)dW(t),

−dy2(t) = g2(y2(t), z2(t), t)dt − z2(t)dW(t),

n(0) = 1, y2(T ) = 1 − ξ∗,

(5)

with constraints ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )} and Eg1[ξ∗] = α, has a solution (y1, z1, y2, z2). Furthermore,
the obtained ξ∗ is an optimal randomized test.

4. Applications

Example 4.1. We study the classical Neyman–Pearson lemma (see [4] or [9]) in our context. There exists a
probability measure μ and a standard d-dimensional Brownian Motion, Wμ(·), defined on the complete prob-
ability space (Ω,F ,μ). For two real vectors θ and φ, we define m(T ) = exp{θ ′Wμ(T ) − 1T ‖θ‖2}, n(T ) =
2
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exp{φ′Wμ(T ) − 1
2T ‖φ‖2}. Suppose that a probability measure Q (resp. P ) is absolutely continuous with respect

to μ on F which admits the Radon–Nikodym derivative m(T ) (resp. n(T )). The purpose is to test the ‘hypothesis’
Q against an ‘alternative’ P . In other words, we try to find a randomized test which minimizes EP [1 − ξ ] subject
to EQ[ξ ] � α. By Girsanov’s theorem, we have that EQ[ξ ] = Eμ[m(T )ξ ], EP [ξ ] = Eμ[n(T )ξ ]. Set the generating
functions g1(y, z, t) = zθ , g2(y, z, t) = zφ. It is easy to check that EQ[ξ ] = Eg1[ξ ], EP [ξ ] = Eg2[ξ ].

By Theorem 3.2, we see that m(·) and n(·) are just the solutions of the adjoint equations and the optimal randomized
test has the form ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )}.

Remark. Since n(T )/m(T ) is the likelihood ratio in this example, we have an interpretation of the adjoint processes
in our general case: n(T )/m(T ) can be seen as a generalization of the “likelihood ratio”. In Huber and Strassen [10],
they derived a generalized Radon-Nikodym derivative of a capacity with respect to another capacity. Our results show
that such generalized Radon–Nikodym derivative in our context is nothing else than the ratio of the adjoint processes.
It should be noted that g in general may be random (see [13]). In this note, we assume that g is a deterministic function
for simplicity, and all the theorems still hold when g is a proper stochastic process.

Example 4.2. In a complete financial market, we denote a contingent claim by H which is a nonnegative random
variable in L2(Ω,F ,P ) and an investor’s wealth process by X(t), 0 � t � T . Without loss of generality, we suppose
that the interest rate and the risk premium process are equal to 0. Thus, the unique equivalent martingale measure
P ∗ = P such that the price of H at time 0 is H0 = EP ∗ [H ]. But if the seller’s initial capital X̃0 is smaller than H0,
then he can not perfectly hedge H and the shortfall is −(H − XT )+. More precisely, the readers may refer to [7]. For
more references about optimal portfolio with constraints, the readers may see [1] and the references therein.

In this example, we introduce, as in [8], the convex risk measure ρg :L2(Ω,F ,P ) → R by ρg(X) = Eg[−X]
where X ∈ L2(Ω,F ,P ) is a financial position and the generator g is convex in (y, z). We suppose that the seller
selects his portfolio to minimize the shortfall risk ρg(−(H − XT )+).

In summary, we try to minimize ρg(−(H − XT )+) subject to X0 � X̃0. Note that X0 = EP ∗ [XT ] and the opti-
mal XT must satisfy 0 � XT � H by the comparison theorem of BSDEs. Then the above problem is equivalent to
inf0�XT �H Eg(H − XT ), subject to EP ∗ [XT ] � X̃0.

Note that EP ∗ can be regarded as a trivial g-expectation. Similar analysis as in Theorem 3.2 shows that there exist
a positive number v and a random variable b (0 � b � H ) such that the optimal terminal wealth X∗

T satisfiesX∗
T =

H1{v<n(T )} + b1{v=n(T )} and EP ∗ [X∗
T ] = X̃0, where n(·) is the solution of the corresponding adjoint equation.
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