

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 293-296

http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations/Complex Analysis

A flower structure of backward flow invariant domains for semigroups

Mark Elin^a, David Shoikhet^a, Lawrence Zalcman^{b,1}

^a Department of Mathematics, ORT Braude College, P.O. Box 78, Karmiel 21982, Israel ^b Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

Received 20 September 2007; accepted 21 November 2007

Available online 11 February 2008

Presented by Haïm Brezis

Abstract

In this Note, we study conditions which ensure the existence of backward flow invariant domains for semigroups of holomorphic self-mappings of a simply connected domain D. More precisely, the problem is the following. Given a one-parameter semigroup S on D, find a simply connected subset $\Omega \subset D$ such that each element of S is an automorphism of Ω , in other words, such that S forms a one-parameter group on Ω . To cite this article: M. Elin et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une structure en rosace de domaines invariants par flot rétrograde de semi-groupes. Dans cette Note nous établissons des conditions qui assument l'existence de domaines invariants par flot rétrograde de semi-groupes d'applications holomorphes d'un domaine D, simplement connexe, dans lui-même. De manière plus précise, étant donné un semi-groupe S à un paramètre sur D, trouver un sous-ensemble connexe $\Omega \subset D$ tel que chaque élément de S soit un automorphisme de Ω , en d'autres termes tel que S soit un groupe à un paramètre sur Ω . *Pour citer cet article : M. Elin et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let *D* be a simply connected domain in the complex plane \mathbb{C} . By Hol (D, Ω) we denote the set of all holomorphic functions on *D* with values in a domain Ω in \mathbb{C} . We write Hol(D) for Hol(D, D), the set of holomorphic self-mappings of *D*. This set is a topological semigroup with respect to composition. We denote by Aut(D) the group of all automorphisms of *D*; thus $F \in Aut(D)$ if and only if *F* is univalent on *D* and F(D) = D.

Definition 1. A family $S = \{F_t\}_{t \ge 0} \subset Hol(D)$ is said to be a one-parameter continuous semigroup (semiflow) on D if:

(i) $F_t(F_s(z)) = F_{t+s}(z)$ for all $t, s \ge 0$;

(ii) $\lim_{t\to 0^+} F_t(z) = z$ for all $z \in D$.

1631-073X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.11.024

E-mail addresses: mark.elin@gmail.com (M. Elin), davs27@netvision.net.il (D. Shoikhet), zalcman@macs.biu.ac.il (L. Zalcman).

¹ Research supported by The German–Israeli Foundation for Scientific Research and Development, G.I.F. Grants No. G-643-117.6/1999 and I-809-234.6/2003.

If, in addition, condition (i) holds for all $t, s \in \mathbb{R}$, then $(F_t)^{-1} = F_{-t}$ for each $t \in \mathbb{R}$; and S is called a *one-parameter* continuous group (flow) on D. In this case, $S \subset \text{Aut}(D)$.

In this Note, we study the following problem: Given a one-parameter semigroup $S \subset Hol(D)$, find a simply connected domain $\Omega \subset D$ (if it exists) such that $S \subset Aut(\Omega)$.

It follows by a result of E. Berkson and H. Porta [4] that each continuous semigroup is differentiable in $t \in \mathbb{R}^+ = [0, \infty)$, (see also [1] and [13]). So, for each continuous semigroup (semiflow) $S = \{F_t\}_{t \ge 0} \subset Hol(D)$, the limit,

$$\lim_{t \to 0^+} \frac{z - F_t(z)}{t} = f(z), \quad z \in D,$$

exists and defines a holomorphic mapping $f \in Hol(D, \mathbb{C})$. This mapping f is called the (infinitesimal) generator of $S = \{F_t\}_{t \ge 0}$.

Let now $D = \Delta$ be the open unit disk in \mathbb{C} .

Observe that if a semigroup $S = \{F_t\}_{t \ge 0}$ does not contain an elliptic automorphism of Δ , then there is a unique point $\tau \in \overline{\Delta}$ which is the attractive point for the semigroup S, i.e., for all $z \in \Delta$,

$$\lim_{t \to \infty} F_t(z) = \tau.$$
⁽¹⁾

This point is usually referred as the **Denjoy–Wolff point** of S. In addition,

- if $\tau \in \Delta$, then $\tau = F_t(\tau)$ is a unique fixed point of S in Δ ;
- if $\tau \in \partial \Delta$, then $\tau = \lim_{r \to 1^-} F_t(r\tau)$ is a common boundary fixed point of S in $\overline{\Delta}$, and no element F_t (t > 0) has an interior fixed point in Δ .

Also, we note that if τ in (1) belongs to $\partial \Delta$, then if follows by a result in [10] that the angular limits,

$$f(\tau) := \angle \lim_{z \to \tau} f(z) = 0$$
 and $f'(\tau) := \angle \lim_{z \to \tau} f'(z) = \beta$

exist and that β is a nonnegative real number (see also [6]). Moreover, if for some point $\zeta \in \partial \Delta$ there are limits,

$$\angle \lim_{z \to \zeta} f(z) = 0$$
 and $\angle \lim_{z \to \zeta} f'(z) = \gamma$

with $\gamma \ge 0$, then $\gamma = \beta$ and $\zeta = \tau$ (see [10] and [15]).

In the case where $\beta > 0$, the semigroup $S = \{F_t\}_{t \ge 0}$ consists of mappings $F_t \in \text{Hol}(\Delta)$ of **hyperbolic type**, $\angle \lim_{z \to \tau} \frac{\partial F_t(z)}{\partial z} = e^{-t\beta} < 1$. Otherwise $(\beta = 0)$, it consists of mappings of **parabolic type**, $\angle \lim_{z \to \tau} \frac{\partial F_t(z)}{\partial z} = 1$ for all $t \ge 0$.

Definition 2. A point $\eta \in \partial \Delta$, is said to be a **boundary regular null point** of $f \in Hol(D, \mathbb{C})$ if $f(\eta) := \angle \lim_{z \to \eta} f(z) = 0$ and $\gamma = \angle \lim_{z \to \eta} f'(z)$ exists finitely.

It follows by a result in [15] (see also [6]) that if $f \in \text{Hol}(D, \mathbb{C})$ is the generator of a semigroup $S = \{F_t\}_{t \ge 0}$ having a boundary regular null point $\eta \in \partial \Delta$ with $\gamma = \Delta \lim_{z \to \eta} f'(z)$, then γ is a real number. Moreover, $\gamma \ge 0$ if and only if $\eta \in \partial \Delta$ is the Denjoy–Wolff point of S; otherwise ($\gamma < 0$), η is a repelling fixed point for S.

It turns out that if a semigroup S generated by $f \in Hol(D, \mathbb{C})$ contains neither elliptic automorphisms of Δ nor a parabolic type self-mapping of Δ , then the solvability of our problem mentioned above is equivalent to the existence of a boundary regular null point of the generator f different from the Denjoy–Wolff point of S. Actually, more is true.

Definition 3. Let $S = \{F_t\}_{t \ge 0}$ be a semiflow on Δ . A domain $\Omega \subset \Delta$ is called a **backward flow-invariant domain** (shortly, **BFID**) for S if $S \subset Aut(\Omega)$.

Theorem 1. Let $S = \{F_t\}_{t \ge 0}$ be a nontrivial semiflow on Δ generated by $f \in Hol(D, \mathbb{C})$ which does not contain an elliptic automorphism of Δ . The following assertions are equivalent:

Fig. 1. BFID's for the semigroup generated by $f(z) = z(1 - z^5)$.

(i) f has a boundary regular null point $\eta \in \partial \Delta$ different from the Denjoy–Wolff point of S, i.e.,

$$\nu = \angle \lim_{z \to \eta} f'(z) < 0;$$

(ii) for some $\alpha > 0$, the differential equation,

$$\alpha \varphi'(z)(z^2 - 1) = 2f(\varphi(z)),$$

has a locally univalent solution φ with $|\varphi(z)| < 1$ when $z \in \Delta$.

Moreover, in this case, $\alpha \ge -\gamma, \varphi$ is univalent and is a Riemann conformal mapping of Δ onto a backward flow invariant domain $\Omega \subset \Delta$, so $S \subset \operatorname{Aut}(\Omega)$.

The following result contains a partial converse:

Theorem 2. Let $S = \{F_t\}_{t \ge 0}$ be a semiflow on Δ generated by f, and let $\tau \in \overline{\Delta}$ be its Denjoy–Wolff point with $f(\tau) = 0$ and $f'(\tau) = \beta$, Re $\beta > 0$. If $\Omega \subset \Delta$ is a nonempty backward flow invariant domain for S, then it is a Jordan domain such that $\tau \in \partial \Omega$, and there is a point $\eta \in \partial \Omega \cap \partial \Delta$ such that $\lim_{t \to -\infty} F_t(z) = \eta$ whenever $z \in \Omega$, $2 \lim_{t \ge \eta} f(z) = 0$ and $2 \lim_{t \ge \eta} f'(z) =: \gamma$ exists with $\gamma < 0$. In addition, there is a conformal mapping φ of Δ onto Ω which satisfies Eq. (2) with some $\alpha \ge -\gamma$.

Definition 4. A backward flow invariant domain (BFID) $\Omega \subset \Delta$ for S is said to be **maximal** if there is no $\Omega_1 \supset \Omega$, $\Omega_1 \neq \Omega$, such that $S \subset \operatorname{Aut}(\Omega_1)$.

Theorem 3. Let $S = \{F_t\}_{t \ge 0}$ be a semiflow on Δ generated by f, and let $\eta \in \partial \Delta$ be a boundary regular null point of f with $\gamma = \angle \lim_{z \to \eta} f'(z) < 0$. Let φ be a (univalent) solution of (2) with $\alpha \ge -\gamma$ normalized by $\varphi(1) = \tau$ and $\varphi(-1) = \eta$. The following assertions are equivalent:

- (i) $\Omega = \varphi(\Delta)$ is a maximal BFID;
- (ii) $\alpha = -\gamma$;
- (iii) φ is isogonal at the boundary point z = -1.

In general, a maximal BFID for S need not be unique. Moreover, if a semigroup $S = \{F_t\}_{t \ge 0}$ contains neither elliptic automorphisms of Δ nor a self-mapping of parabolic type, then there is a one-to-one correspondence between maximal flow invariant domains for S and repelling fixed points. This fact determines a flower structure of the collection of BFID's around the Denjoy–Wolff point (see Fig. 1).

Theorem 4. Let $S = \{F_t\}_{t \ge 0}$ be a semiflow on Δ generated by f. Assume that there is a sequence $\{\eta_k\} \in \partial \Delta$ of boundary regular null points of f, i.e., $f(\eta_k) = 0$ and $\gamma_k = f'(\eta_k) > -\infty$. Then the following assertions hold.

(2)

- (i) There is $\delta > 0$ such that $\gamma_k < -\delta < 0$ for all k = 1, 2, ...
- (ii) For each $a < -\delta < 0$ there is at most a finite number of the points η_k such that $a \leq \gamma_k < -\delta$. Consequently, Eq. (2) has a (univalent) solution $\varphi \in \text{Hol}(\Delta)$ for each $\alpha \geq -\max\{\gamma_k\} > -\delta$.
- (iii) If φ_k is a solution of (2) normalized by $\varphi_k(1) = \tau$, $\varphi_k(-1) = \eta_k$ with $\alpha = \gamma_k$ and $\Omega_k = \varphi_k(\Delta)$ (i.e., Ω_k are maximal), then for each pair Ω_{k_1} and Ω_{k_2} such that $\eta_{k_1} \neq \eta_{k_2}$ either $\overline{\Omega_{k_1}} \cap \overline{\Omega_{k_2}} = \{\tau\}$ or $\overline{\Omega_{k_1}} \cap \overline{\Omega_{k_2}} = l$, where l is a continuous curve joining τ with a point on $\partial \Delta$.

The proofs of our theorems are based on linearization models for semigroups constructed by solutions of Schröder's and Abel's functional equations (see, for example, [12,3,7,8] and [5]). The main tools in the study of geometric properties of these solutions are recent developments in the theory of starlike and spirallike functions with respect to a boundary point (see [14,11,16,9] and [2]). On the way to solving these problems, we prove a new angle distortion theorem for starlike and spiral-like functions with respect to interior and boundary points.

Acknowledgement

The second author thanks Professors M.D. Contreras and S. Díaz-Madrigal for discussions of the parabolic case.

References

- [1] M. Abate, Converging semigroups of holomorphic maps, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (8) (1988) 223–227.
- [2] D. Aharonov, M. Elin, D. Shoikhet, Spirallike functions with respect to a boundary point, J. Math. Anal. Appl. 280 (2003) 17–29.
- [3] I.N. Baker, Ch. Pommerenke, On the iteration of analytic functions in a halfplane. II., J. London Math. Soc. 20 (2) (1979) 255–258.
- [4] E. Berkson, H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978) 101–115.
- [5] M.D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, Some remarks on Abel equation, preprint, 2005.
- [6] M.D. Contreras, S. Díaz-Madrigal, C. Pommerenke, On boundary critical points for semigroups of analytic functions, Math. Scand. 98 (2006) 125–142.
- [7] C.C. Cowen, B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
- [8] M. Elin, V. Goryainov, S. Reich, D. Shoikhet, Fractional iteration and functional equations for functions analytic in the unit disk, Comput. Methods Funct. Theory 2 (2002) 353–366.
- [9] M. Elin, S. Reich, D. Shoikhet, Dynamics of inequalities in geometric function theory, J. Inequal. Appl. 6 (2001) 651–664.
- [10] M. Elin, D. Shoikhet, Dynamic extension of the Julia–Wolff–Carathéodory Theorem, Dynam. Systems Appl. 10 (2001) 421–438.
- [11] A. Lyzzaik, On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc. 91 (1984) 108-110.
- [12] Ch. Pommerenke, On the iteration of analytic functions in a halfplane, J. London Math. Soc. 19 (2) (1979) 439-447.
- [13] S. Reich, D. Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal. 3 (1998) 203–228.
- [14] M.S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981) 327-345.
- [15] D. Shoikhet, Representations of holomorphic generators and distortion theorems for spirallike functions with respect to a boundary point, Int. J. Pure Appl. Math. 5 (2003) 335–361.
- [16] H. Silverman, E.M. Silvia, Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math. 16 (1990) 289–299.