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Abstract

In this Note, we study conditions which ensure the existence of backward flow invariant domains for semigroups of holomorphic
self-mappings of a simply connected domain D. More precisely, the problem is the following. Given a one-parameter semigroup
S on D, find a simply connected subset Ω ⊂ D such that each element of S is an automorphism of Ω , in other words, such that S
forms a one-parameter group on Ω . To cite this article: M. Elin et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une structure en rosace de domaines invariants par flot rétrograde de semi-groupes. Dans cette Note nous établissons des
conditions qui assument l’existence de domaines invariants par flot rétrograde de semi-groupes d’applications holomorphes d’un
domaine D, simplement connexe, dans lui-même. De manière plus précise, étant donné un semi-groupe S à un paramètre sur D,
trouver un sous-ensemble connexe Ω ⊂ D tel que chaque élément de S soit un automorphisme de Ω , en d’autres termes tel que S
soit un groupe à un paramètre sur Ω . Pour citer cet article : M. Elin et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let D be a simply connected domain in the complex plane C. By Hol(D,Ω) we denote the set of all holomorphic
functions on D with values in a domain Ω in C. We write Hol(D) for Hol(D,D), the set of holomorphic self-
mappings of D. This set is a topological semigroup with respect to composition. We denote by Aut(D) the group of
all automorphisms of D; thus F ∈ Aut(D) if and only if F is univalent on D and F(D) = D.

Definition 1. A family S = {Ft }t�0 ⊂ Hol(D) is said to be a one-parameter continuous semigroup (semiflow) on D if:

(i) Ft (Fs(z)) = Ft+s(z) for all t, s � 0;
(ii) limt→0+ Ft (z) = z for all z ∈ D.
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If, in addition, condition (i) holds for all t, s ∈ R, then (Ft )
−1 = F−t for each t ∈ R; and S is called a one-parameter

continuous group (flow) on D. In this case, S ⊂ Aut(D).

In this Note, we study the following problem: Given a one-parameter semigroup S ⊂ Hol(D), find a simply
connected domain Ω ⊂ D (if it exists) such that S ⊂ Aut(Ω).

It follows by a result of E. Berkson and H. Porta [4] that each continuous semigroup is differentiable in t ∈ R
+ =

[0,∞), (see also [1] and [13]). So, for each continuous semigroup (semiflow) S = {Ft }t�0 ⊂ Hol(D), the limit,

lim
t→0+

z − Ft(z)

t
= f (z), z ∈ D,

exists and defines a holomorphic mapping f ∈ Hol(D,C). This mapping f is called the (infinitesimal) generator of
S = {Ft }t�0.

Let now D = Δ be the open unit disk in C.
Observe that if a semigroup S = {Ft }t�0 does not contain an elliptic automorphism of Δ, then there is a unique

point τ ∈ Δ̄ which is the attractive point for the semigroup S , i.e., for all z ∈ Δ,

lim
t→∞Ft (z) = τ. (1)

This point is usually referred as the Denjoy–Wolff point of S . In addition,

• if τ ∈ Δ, then τ = Ft(τ ) is a unique fixed point of S in Δ;
• if τ ∈ ∂Δ, then τ = limr→1− Ft(rτ ) is a common boundary fixed point of S in Δ̄, and no element Ft (t > 0) has

an interior fixed point in Δ.

Also, we note that if τ in (1) belongs to ∂Δ, then if follows by a result in [10] that the angular limits,

f (τ) := � lim
z→τ

f (z) = 0 and f ′(τ ) := � lim
z→τ

f ′(z) = β

exist and that β is a nonnegative real number (see also [6]). Moreover, if for some point ζ ∈ ∂Δ there are limits,

� lim
z→ζ

f (z) = 0 and � lim
z→ζ

f ′(z) = γ,

with γ � 0, then γ = β and ζ = τ (see [10] and [15]).
In the case where β > 0, the semigroup S = {Ft }t�0 consists of mappings Ft ∈ Hol(Δ) of hyperbolic type,

� limz→τ
∂Ft (z)

∂z
= e−tβ < 1. Otherwise (β = 0), it consists of mappings of parabolic type, � limz→τ

∂Ft (z)
∂z

= 1 for all
t � 0.

Definition 2. A point η ∈ ∂Δ, is said to be a boundary regular null point of f ∈ Hol(D,C) if f (η) :=
� limz→η f (z) = 0 and γ = � limz→η f ′(z) exists finitely.

It follows by a result in [15] (see also [6]) that if f ∈ Hol(D,C) is the generator of a semigroup S = {Ft }t�0
having a boundary regular null point η ∈ ∂Δ with γ = � limz→η f ′(z), then γ is a real number. Moreover, γ � 0 if
and only if η ∈ ∂Δ is the Denjoy–Wolff point of S ; otherwise (γ < 0), η is a repelling fixed point for S .

It turns out that if a semigroup S generated by f ∈ Hol(D,C) contains neither elliptic automorphisms of Δ nor a
parabolic type self-mapping of Δ, then the solvability of our problem mentioned above is equivalent to the existence
of a boundary regular null point of the generator f different from the Denjoy–Wolff point of S . Actually, more is true.

Definition 3. Let S = {Ft }t�0 be a semiflow on Δ. A domain Ω ⊂ Δ is called a backward flow-invariant domain
(shortly, BFID) for S if S ⊂ Aut(Ω).

Theorem 1. Let S = {Ft }t�0 be a nontrivial semiflow on Δ generated by f ∈ Hol(D,C) which does not contain an
elliptic automorphism of Δ. The following assertions are equivalent:
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Fig. 1. BFID’s for the semigroup generated by f (z) = z(1 − z5).

(i) f has a boundary regular null point η ∈ ∂Δ different from the Denjoy–Wolff point of S , i.e.,

γ = � lim
z→η

f ′(z) < 0;
(ii) for some α > 0, the differential equation,

αϕ′(z)(z2 − 1) = 2f
(
ϕ(z)

)
, (2)

has a locally univalent solution ϕ with |ϕ(z)| < 1 when z ∈ Δ.

Moreover, in this case, α � −γ,ϕ is univalent and is a Riemann conformal mapping of Δ onto a backward flow
invariant domain Ω ⊂ Δ, so S ⊂ Aut(Ω).

The following result contains a partial converse:

Theorem 2. Let S = {Ft }t�0 be a semiflow on Δ generated by f , and let τ ∈ Δ̄ be its Denjoy–Wolff point with
f (τ) = 0 and f ′(τ ) = β,Reβ > 0. If Ω ⊂ Δ is a nonempty backward flow invariant domain for S , then it is a
Jordan domain such that τ ∈ ∂Ω , and there is a point η ∈ ∂Ω ∩ ∂Δ such that limt→−∞ Ft(z) = η whenever z ∈ Ω ,
� limz→η f (z) = 0 and � limz→η f ′(z) =: γ exists with γ < 0. In addition, there is a conformal mapping ϕ of Δ onto
Ω which satisfies Eq. (2) with some α � −γ .

Definition 4. A backward flow invariant domain (BFID) Ω ⊂ Δ for S is said to be maximal if there is no Ω1 ⊃ Ω ,
Ω1 �= Ω, such that S ⊂ Aut(Ω1).

Theorem 3. Let S = {Ft }t�0 be a semiflow on Δ generated by f , and let η ∈ ∂Δ be a boundary regular null point
of f with γ = � limz→η f ′(z) < 0. Let ϕ be a (univalent) solution of (2) with α � −γ normalized by ϕ(1) = τ and
ϕ(−1) = η. The following assertions are equivalent:

(i) Ω = ϕ(Δ) is a maximal BFID;
(ii) α = −γ ;

(iii) ϕ is isogonal at the boundary point z = −1.

In general, a maximal BFID for S need not be unique. Moreover, if a semigroup S = {Ft }t�0 contains neither
elliptic automorphisms of Δ nor a self-mapping of parabolic type, then there is a one-to-one correspondence be-
tween maximal flow invariant domains for S and repelling fixed points. This fact determines a flower structure of the
collection of BFID’s around the Denjoy–Wolff point (see Fig. 1).

Theorem 4. Let S = {Ft }t�0 be a semiflow on Δ generated by f . Assume that there is a sequence {ηk} ∈ ∂Δ of
boundary regular null points of f , i.e., f (ηk) = 0 and γk = f ′(ηk) > −∞. Then the following assertions hold.
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(i) There is δ > 0 such that γk < −δ < 0 for all k = 1,2, . . . .
(ii) For each a < −δ < 0 there is at most a finite number of the points ηk such that a � γk < −δ. Consequently,

Eq. (2) has a (univalent) solution ϕ ∈ Hol(Δ) for each α � −max{γk} > −δ.
(iii) If ϕk is a solution of (2) normalized by ϕk(1) = τ , ϕk(−1) = ηk with α = γk and Ωk = ϕk(Δ) (i.e., Ωk are

maximal), then for each pair Ωk1 and Ωk2 such that ηk1 �= ηk2 either Ωk1 ∩ Ωk2 = {τ } or Ωk1 ∩ Ωk2 = l, where l

is a continuous curve joining τ with a point on ∂Δ.

The proofs of our theorems are based on linearization models for semigroups constructed by solutions of Schröder’s
and Abel’s functional equations (see, for example, [12,3,7,8] and [5]). The main tools in the study of geometric
properties of these solutions are recent developments in the theory of starlike and spirallike functions with respect to
a boundary point (see [14,11,16,9] and [2]). On the way to solving these problems, we prove a new angle distortion
theorem for starlike and spiral-like functions with respect to interior and boundary points.
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