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Abstract

In the usual ARCH model, the coefficients have a degenerate distribution, and it is thus constant over realizations. In this Note
we introduce the ARCH model, involving coefficients that are independent random variables and may vary over realizations.
Conditions for the existence of a stationary solution and conditions ensuring the existence of higher order moments are obtained.
The covariance structures of such models are studied. To cite this article: A. Bibi, M. Bousseboua, C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur le modèle ARCH avec des coefficients aléatoires. Contrairement aux modèles ARCH usuels, où les coefficients sont
supposés constants, nous considérons dans cette Note, une classe de modèles ARCH à coefficients aléatoires. Les conditions
assurant l’existence et l’unicité de solutions stationnaires ainsi que l’existence des moments d’ordre supérieur et la structure de
covariance de cette classe de modèles sont étudiées. Pour citer cet article : A. Bibi, M. Bousseboua, C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The class of Autoregressive conditional heteroscedasticity of order p, denoted as ARCH(p), and introduced firstly
by Engle [2], is a class of nonlinear models that plays an important role in financial econometrics and has sometimes
proved useful in modelling the residuals for time series models. In this Note, we consider the model

Xt = etσt and σ 2
t = A0 +

p∑
i=1

AiX
2
t−i , t ∈ Z := {0,±1,±2, . . .} (1)

where the coefficients A0, . . . ,Ap are discrete random variables taking a finite number of values such that, almost
surely (a.s.) A0 > 0 and Ai � 0, 1 � i � p, and where (et )t∈Z is an i.i.d. sequence such that E{et } = E{e3

t } = 0, κ1 = 1
and κ2 < +∞ where κk = E{e2k

t }. This class of models is noted as RC-ARCH(p) and we assume that A0, . . . ,Ap are
mutually independent and independent of et for all t , and Xt is independent of es for all s > t .
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The RC-ARCH(p) models may exhibit spurious long memory properties and switching regimes, so they can be
seen as STAR(p) models (see Dick et al. [3]) with eventually a large number of regimes, which is of little use in prac-
tice. Some other interesting motivations and recent developments can be found in Kazakevičius et al. [6], Klivečka [7]
and Thavaneswaran [8]. In this Note, we study the existence and the uniqueness of stationary solutions of Eq. (1) and
investigate the conditions ensuring the existence of higher order moments. The covariance structure of the squared
process is given.

2. Existence of stationary solutions and higher moments for RC-ARCH(p)

In this Note, we are only interested in causal solutions i.e., solutions such that Yt is �t -measurable, where �t :=
σ(ξs, s � t). By setting Yt = X2

t , ξt = e2
t we obtain

Yt = A0ξt +
p∑

i=1

AiξtYt−i . (2)

In the following, we will extensively use (2).

2.1. Stationary solution for a RC-ARCH(p)

Let us define the matrix At = (Aj ξt δi,1 + δi,j+1)1�i,j�p where δij is the Kronecker symbol and the vectors Y t :=
(Yt , . . . , Yt−p+1)

′
p×1 and bt := (ξtA0,0, . . . ,0)′p×1. Then

Y t = At Y t−1 + bt (3)

and Yt = C′Y t where C := (1,0, . . . ,0)′. Let ‖ · ‖ be the matrix norm inducted by any vectorial norm on R
p and

log+ x = max{logx,0}. It can be shown (cf. [4] ) that if E{log+ ‖A0‖} < +∞ then

γL := lim sup
n→∞

{
E

{
1

n
log

∥∥∥∥∥
n∏

i=0

At−i

∥∥∥∥∥
}}

always exists (may be infinite) and furthermore γL � γop where γop := E{log‖∏p

i=1 Aj‖}.
Theorem 1. If γop < 0, then the series

Y t =
∞∑

k=1

{
k−1∏
i=0

At−i

}
bt−k + bt (4)

converges a.s. and the process (Yt )t∈Z defined as the first component of (Y t )t∈Z is the unique ca. (2).

Example 1. Consider the RC-ARCH(2) and let ‖A‖ := ∑
i,j |aij |, then we have

‖AtAt−1‖ = A2
1ξt ξt−1 + A2ξt + A1A2ξt ξt−1 + A1ξt−1 + A2ξt−1.

Hence, E{log‖AtAt−1‖} < 0 whenever ‖E{A2}‖ < 1 where A = E{At |σ {A1,A2}} with σ {A1,A2} is the σ -algebra
generated by A1, A2. In general, for a RC-ARCH(p) if ‖E{Ap}‖ < 1, then γL < 0 and hence the results of Theorem 1
follows.

It is worth noting that the criterion γL < 0 (even γop < 0) is of little use for checking of stationarity in applied
works. Indeed, the stationary solution needs to have some moments to make an estimation theory possible and the
criterion does not guarantee the existence of such moments. This leads to search for conditions on the structure of
(Ai)0�i�p ensuring the existence of moments for the strict stationary solution for which γL < 0.

Proposition 1. Let A = E{At |�A} with �A := σ(A0, . . . ,Ap) and ρ(A) the maximum modulus of the eigenvalues of
the matrix A. Eq. (3) has a strictly stationary solution in L1 if and only if, almost surely

ρ(A) < 1. (5)

Moreover, this solution is causal, unique and given by the series (4) which converges almost surely and in mean.



A. Bibi, M. Bousseboua / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 221–224 223
Proof. The proof follows from standard arguments (see Liu [5]). First, define a R
p-valued stochastic process which

will be used in the proof to generated a strictly stationary solution of (3). For any (n, t) ∈ Z × Z, let

Sn(t) = At Sn−1(t − 1) + bt

if n � 0 and 0 otherwise. By a simple iteration, we see that Sn(t) = ∑n
k=1{

∏k−1
i=0 At−i}bt−k +bt and hence the process

(Sn(t))t∈Z is strictly stationary for fixed n � 0. Therefore, since the elements of the matrices {∏n−1
i=0 At−i}bt−n are

nonnegative, we obtain for any n � 1,

E

{∥∥∥∥∥
n−1∏
i=0

At−ibt−n

∥∥∥∥∥
}

= (1, . . . ,1)E{An}b

where b = E{bt }. On the other hand, the condition (5) implies that E{An} decays to 0 as n → ∞. Thus Sn(t) converges
a.s. and in L1 (by the Cauchy’s criterion) as n → ∞. Now, let Y t = limn→∞ Sn(t), it is easy to see that the process
(Y t )t∈Z is strictly stationary and satisfies (3). Conversely, from (3) we have for any n � 1

Y 0 =
n−1∑
k=1

{
k−1∏
i=0

A−i

}
b−k +

{
n−1∏
i=0

A−i

}
Y−n. (6)

By taking the expectation of each side of (6), it follows that E{Y 0} > E{∑n−1
k=1 Akb}; this shows that E{∑∞

k=1 Akb} <

+∞. Therefore limn→∞ Anb = 0 a.s. Let (αi)1�i�p be the canonical basic of R
p . Using the same argument that

Bougerol and Picard [1], we obtain limn→∞ Anαi = 0 a.s. for any i = 1, . . . , p and this implies that limn→∞ An = 0
a.s. which again implies that ρ(A) < 1. The uniqueness of the solution is immediate. �
Corollary 1. Under the Conditions of Proposition 1, the process (Yt )t∈Z defined as the first component of (Y t )t∈Z is
the unique, strictly stationary and causal solution in L1 of (2).

Remark 1. Since det(λI(p) − A) = λp(1 − ∑p

i=1 Aiλ
−i ), then a strictly stationary solution (Yt )t∈Z of (2) exists in L1

if and only if P(A1 + A2 + · · · + Ap < 1) = 1. However, the unique stationary solution of (2) is a weak white noise
with variance Var{Xt } = C′E{(I(p) − A)−1}b where I(p) is identity matrix of order p.

2.2. Existence of higher order moments

In this subsection, we shall derive necessary and sufficient conditions for the finiteness of E{X2k
t } for any k � 1.

The existence of E{X2k
t } reduce to the convergence of (Sn(t))n�0 in Lk , since as is shown in above subsection

(Sn(t))n�0 converge to Y t in L1. The element of interest for determining Lk-convergence is Vn := E{‖
n(t)‖k} where

n(t) := Sn(t) − Sn−1(t). By using the properties of tensor product denoted by ⊗: AB ⊗ CD = (A ⊗ C)(B ⊗ D),
(AX)⊗r = A⊗rX⊗r and ‖A‖‖B‖ = ‖A ⊗ B‖ = ‖B ⊗ A‖ we obtain

E
{∥∥
n(t)

∥∥k} =
∥∥∥∥∥E

{
n−1∏
i=0

At−ibt−n

}⊗k∥∥∥∥∥ =
∥∥∥∥∥E

{
n−1∏
i=0

A⊗k
t−ib

⊗k
t−n

}∥∥∥∥∥ (7)

where M⊗r := M ⊗ M ⊗ · · · ⊗ M r-time for every matrix M . Let A(k) = E{A⊗k
t |�A}, b(k) = E{b⊗k

t }, then from (7)
we obtain E{‖
n(t)‖k} � ‖E{(A(k))n}b(k)‖. Hence

‖Y t‖k = {
E‖Y t‖k

}1/k �
∑
n�0

∥∥
n(t)
∥∥

k
�

{∑
n�0

∥∥E(A(k))n
∥∥1/k

}
‖b(k)‖1/k.

If ρ(A(k)) < 1, then ‖E(A(k))n‖ converge to zero (with exponential rate) as n → ∞. Thus we have proved the fol-
lowing theorem

Theorem 2. Assume that κk < ∞ and that almost surely

ρ(A(k)) < 1. (8)
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Then, for all t ∈ Z, the series (Y t )t∈Z defined by (4) converges in Lk and the process (Yt )t∈Z defined as the first
component of (Y t )t∈Z is strictly stationary and admits moments up to the order k. Conversely, the condition (8) is also
necessary for the existence of strictly stationary process RC-ARCH(p) satisfies (2) such that E{X2k

t } < +∞.

2.3. Covariance structure of RC-ARCH(p)

Assume that the process (Y t )t∈Z satisfies the conditions of Theorem 2 for k = 2 and �(τ ) := E{(Y t −μ1)(Y t−τ −
μ1)

′} its covariance function where μ1 := E{Y t }. Let μc
1 := E{Y t |�A}, μc

2(τ ) := E{Y tY
′
t−τ |�A}. Firstly, since Y⊗2

t =
b⊗2

t + (bt ⊗At +At ⊗bt )Y t−1 +A⊗2
t Y⊗2

t−1 then μc
1 and Vect{μc

2(0)} is a solution to the equations μc
1 = (I(p) −A)−1b

and Vect{μc
2(0)} = (I(p2) − A(2))−1[κ2b

⊗2 + (b ⊗ A(1) + A(1) ⊗ b)μc
1] where A(1) = E{ξtAt |�A}. Secondly, for any

τ � 1 we have the Yule–Walker type equation

μc
2(τ ) = Aμc

2(τ − 1) + b(μc
1)

′ =
(

τ−1∑
i=0

Ai

)
b ⊗ (μc

1)
′ + Aτμc

2(0)

= (I(p) − A)−1(I(p) − Aτ )b ⊗ (μc
1)

′ + Aτμc
2(0), τ � 1.

Then, because μc(τ) = (μc
2(τ − i + j))1<l,j�p with μc

2(τ ) = μc
2(−τ) = E(YtYt−τ |�A), the covariance function

(γ (τ ))τ�0 of the model (2) can be easily recovered from the conditional covariance function of its vectorial represen-
tation by means of an appropriately selection matrix C′(E{μc(τ)} − (E{μc

1})(E{μc
1})′)C.

Remark 2. When p = 1, the previous computations give μc
1 = A0

1−A1
, μc

2(τ ) = Aτ
1A2

0(κ2−1)

(1−A1)
2(1−κ2A

2
1)

+ A2
0

(1−A1)
2 and

γ (τ) = E{ Aτ
1A2

0(κ2−1)

(1−A1)
2(1−A2

1κ2)
} + Var{ A0

1−A1
} which reduce to standard expression in a nonrandom environment. Hence,

the covariance function of (Yt )t∈Z is nonsummable.
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[7] A. Klivečka, Random coefficient GARCH(1,1) model with i.i.d. coefficients, Lithuanian Math. J. 44 (4) (2004) 374–384.
[8] A. Thavaneswaran, S.S. Appadoo, M. Samanta, Random coefficient GARCH models, Math. Comput. Modelling 41 (2005) 723–733.


