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Abstract

In this Note we prove that the second Riemannian Lp-Sobolev best constant B0(p,g) depends continuously on g in the C0-
topology when 1 < p < 2. The situation changes significantly in the case p = 2. In particular, we prove that B0(2, g) is continuous
on g in the C2-topology and is not in the C1,β -topology. To cite this article: E.R. Barbosa, M. Montenegro, C. R. Acad. Sci.
Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la continuité de la deuxième meilleure constante de Sololev. Dans cette Note nous prouvons que la deuxième meilleure
constante dans l’inégalité de Lp-Sobolev Riemannienne B0(p,g) dépend continûment de g dans la topologie C0 quand 1 < p < 2.
La situation change radicalement lorsque p = 2. En particulier, nous montrons que B0(2, g) est continu en g dans le C2-topologie
et ne l’est pas dans le C1,β -topologie. Pour citer cet article : E.R. Barbosa, M. Montenegro, C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let (M,g) be a compact Riemannian manifold of dimension n � 2. For 1 < p < n, we denote by H
p

1 (M) the
standard first-order Sobolev space defined as the completion of C∞(M) with respect to the norm

||u||Hp
1 (M) =

(∫
M

|∇gu|p dvg +
∫
M

|u|p dvg

)1/p

.

The Sobolev embedding theorem ensures that the inclusion H
p

1 (M) ⊂ Lp∗
(M) is continuous for p∗ = np

n−p
. Thus,

there exist constants A,B ∈ R such that, for any u ∈ H
p

1 (M),
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(∫
M

|u|p∗
dvg

)p/p∗

� A

∫
M

|∇gu|p dvg + B

∫
M

|u|p dvg. (Ip
g )

In this case, we say simply that (Ip
g ) is valid.

The first Sobolev best constant associated to (Ip
g ) is

A0(p,g) = inf
{
A ∈ R: there exists B ∈ R such that (I

p
g ) is valid

}
.

The value of A0(p,g) was found by Aubin in [1]. This best constant is usually denoted in the literature by K(n,p)p

since its value does not depend on the metric g.
The first optimal Riemannian Lp-Sobolev inequality states that, for any u ∈ H

p

1 (M),

(∫
M

|u|p∗
dvg

)p/p∗

� K(n,p)p
∫
M

|∇gu|p dvg + B

∫
M

|u|p dvg (Ip
g,opt)

for some constant B ∈ R. The validity of (Ip
g,opt) has been proved, for p = 2, by Hebey and Vaugon [8], and for

1 < p < 2, independently, by Aubin and Li [2] and Druet [6]. When 2 < p < n+2
3 and the scalar curvature of g is

positive somewhere, Druet [5] showed the non-validity of (Ip
g,opt).

For 1 < p � 2, define the second Lp-Sobolev best constant by B0(p,g) = inf{B ∈ R: (I
p
g,opt) is valid}. On the

contrary of the first Sobolev best constant, the second one depends strongly on the metric. Note that if g̃ = λg,
where λ > 0 is a constant, then B0(p, g̃) = λ−1B0(p,g). Thus, the following question arises naturally: Does B0(p,g)

depend continuously on the metric g in some topology? Surprising, the answer to this question changes significantly
from 1 < p < 2 to p = 2 as show the following results:

Theorem 1.1. Let M be a compact Riemannian manifold of dimension n � 2 and M the space of smooth Riemannian
metrics on M . Assume 1 < p < min{2,

√
n}. Then, the map g ∈ M �→ B0(p,g) is continuous in the C0-topology, i.e.

if the components of metric gα
ij converges to gij in C0(M), then B0(p,gα) → B0(p,g) as α → +∞.

Theorem 1.2. Let M be a compact Riemannian manifold of dimension n and M as in Theorem 1.1. Assume p = 2
and n � 4. If (gα) is a sequence in M such that gα → g in C0(M) and Scalgα → Scalg pointwise in M , where
Scalg denotes the scalar curvature of the metric g, then B0(2, gα) → B0(2, g) as α → +∞. In particular, the map
g ∈ M �→ B0(2, g) is continuous in the C2-topology. Moreover, the scalar curvature convergence or C2-convergence
assumption is necessary.

The proof of Theorems 1.1 and 1.2 are made by contradiction. The proofs consist in finding estimates for a family
of minimizers of geometry-dependent functionals around a concentration point. These ideas are inspired in the work
of Djadli and Druet [4].

2. Proof of Theorems 1.1 and 1.2

We present a sketch of the proof of Theorem 1.2. Let (gα) be a sequence of metrics on M such that gα converges
to a metric g in the C0-topology and Scalgα converges to Scalg pointwise in M . Suppose, by contradiction, that there
exists ε0 > 0 such that |B0(2, gα) − B0(2, g)| > ε0 for infinitely many α. Then, at least, one of the situations holds:
B0(2, g) − B0(2, gα) > ε0 or B0(2, gα) − B0(2, g) > ε0 for infinitely many α. If the first situation holds, replacing
B0(2, gα) by B0(2, g) − ε0 in the optimal inequality associated to the metric gα and letting α → +∞, we contradict
the definition of B0(2, g).

Suppose then that the second situation holds, i.e. B0(2, g) + ε0 < B0(2, gα) for infinitely many α. For each α,
consider the functional

Jα(u) =
∫

|∇gαu|2 dvgα + (B0(2, g) + ε0)K(n,2)−2
∫

u2 dvgα
M M
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defined on Λα = {u ∈ H 2
1 (M):

∫
M

|u|2∗
dvgα = 1}. From the definition of B0(2, gα), it follows directly that λα :=

infΛα Jα(u) < K(n,2)−2. But this implies the existence of a non-negative minimizer uα ∈ Λα for λα . The Euler–
Lagrange equation for uα is then

−�gαuα + (
B0(2, g) + ε0

)
K(n,2)−2uα = λαu2∗−1

α , (Eα)

where �gα = divgα (∇gα ) is the Laplacian operator with respect to the metric gα . By the standard elliptic theory, uα

belongs to C∞(M) and uα > 0 on M . Our goal now is to study the sequence (uα)α as α → +∞. From the convergence
gα → g, it follows that (uα)α is bounded in H 2

1 (M) with respect to the metric g. So, there exists u ∈ H 2
1 (M), u � 0,

such that uα ⇀ u weakly in H 2
1 (M) and λα → λ as α → +∞, up to a subsequence. Moreover, by the Sobolev

embedding compactness theorem, one easily finds∫
M

uq
α dvgα →

∫
M

uq dvg (1)

for any 1 � q < 2∗. So, letting α → +∞ in Eq. (Eα), one concludes that u satisfies

�gu + (
B0(2, g) + ε0

)
K(n,2)−2u = λu2∗−1. (E)

Assume that u 
= 0. In this case, by (J 2
g,opt) and (E), one has

(∫
M

u2∗
dvg

)2/2∗

< K(n,2)2
∫
M

|∇gu|2 dvg + (
B0(2, g) + ε0

)∫
M

u2 dvg

= K(n,2)2λ

∫
M

u2∗
dvg �

∫
M

u2∗
dvg,

since 0 � λ � K(n,2)−2. This implies that
∫
M

u2∗
dvg > 1. But this inequality contradicts

∫
M

u2∗
dvg �

lim inf
∫
M

u2∗
α dvgα = 1. We then assume that u = 0 on M and prove that this assumption leads to a contradiction.

We assert, in this case, that λα → K(n,2)−2 as α → +∞. In fact, noting that
∫
M

u2∗
α dvg → 1 since uα ∈ Λα ,

and lim
∫
M

u2
α dvgα = 0 by (1), letting α → +∞ in the Sobolev inequality associated to the metric g, one finds

lim inf
∫
M

|∇guα|2 dvg � K(n,2)−2, so that lim inf
∫
M

|∇gαuα|2 dvgα � K(n,2)−2. Therefore, combining this last in-
equality with

∫
M

|∇gαuα|2 dvgα � λα, it follows directly that λ = K(n,2)−2. Let xα ∈ M be a maximum point of uα ,
i.e uα(xα) = ‖uα‖∞. Let x0 ∈ M be such that xα → x0, up to a subsequence.

We divide the proof into three stages. We next only mention each one of them.
First stage: For each R > 0, we have

lim
α→+∞

∫
Bgα (xα,Rμα)

u2∗
α dvgα = 1 − εR (2)

where μα = ‖uα‖−2∗/n∞ and ε = ε(R) → 0 as R → +∞.
Second stage: There exist constants c, δ > 0, independent of α, such that dgα (x, xα)n/2∗

uα(x) � c for all x ∈
Bgα (xα, δ), where dgα stands for the distance with respect to the metric gα .

Third stage: For any δ > 0 small enough,

lim
α→+∞

∫
M\Bgα (x0,δ)

u2
α dvgα∫

M
u2

α dvgα

= 0. (3)

The proof of the third stage relies on the first and second ones.
We now argue with the third stage in order to obtain a contradiction. Some possibly different positive constants

independent of α will be denoted by c. Combining the local isoperimetric inequality of [7] and the co-area formula,
as done recently in [3], for any ε > 0, we easily find δε > 0, independent of α, such that(∫

|u|2∗
dvgα

)2/2∗

� K(n,2)2
∫

|∇gαu|2 dvgα + Bε(gα)

∫
u2 dvgα (4)
M M M
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for all u ∈ C∞
0 (Bgα (x0, δε)), where Bε(gα) = n−2

4(n−1)
K(n,2)2(Scalgα (x0) + ε). Fix 0 < ε < ε0 and consider a smooth

cutoff function ηα such that 0 � ηα � 1, ηα = 1 in Bgα (x0, δε/4) and ηα = 0 in M \ Bgα (x0, δε/2). Taking u = ηαuα

in (4), using the identity∫
M

∣∣∇gα (ηαuα)
∣∣2 dvgα = −

∫
M

η2
αuα�gαuα dvgα +

∫
M

|∇gαηα|2u2
α dvgα ,

Eq. (Eα) and the third stage, one arrives at
(∫

M

|ηαuα|2∗
dvgα

)2/2∗

−
∫
M

η2
α|uα|2∗

dvgα � −(
B0(g) + ε0

)∫
M

η2
αu2

α dvgα + Bε(gα)

∫
M

η2
αu2

α dvgα

+ c

∫
M

|∇gαηα|2u2
α dvgα .

By Hölder inequality,∫
M

η2
α|uα|2∗

dvgα �
(∫

M

|ηαuα|2∗
dvgα

)2/2∗(∫
M

|uα|2∗
dvgα

)(2∗−2)/2∗

�
(∫

M

|ηαuα|2∗
dvgα

)2/2∗

,

so that(
B0(g) − Bε(gα) + ε0

)∫
M

η2u2
α dvgα � c

∫
M

|∇gαηα|2u2
α dvgα .

This inequality imply

n − 2

4(n − 1)
K(n,2)2(Scalg − Scalgα )(x0) + ε0 − ε � c

∫
M\Bgα (x0,δε/2)

u2
α dvgα∫

M
u2

α dvgα

.

Letting α → +∞ and applying again the third stage, we clearly find the desired contradiction. As claimed in the
statement of Theorem 1.2, the scalar curvature convergence or the C2-convergence assumption is necessary as shows
the following example:

Let (M,g0) be a smooth compact Riemannian manifold of dimension n � 4. Let (fα)α ⊂ C∞(M) be a sequence
of positive functions converging to the constant function f0 = 1 in Lp(M), p > n, such that maxM fα → +∞. Let
uα ∈ C∞(M), uα > 0, be the solution of −c(n)�g0u+u = fα , where c(n) = 4(n−1)

n−2 . By elliptic Lp-theory, it follows

that (uα)α is bounded in H 2,p(M), so that uα converges to u0 in C1,β(M) for some 0 < β < 1. Moreover, u0 = 1
since fα converges to 1 in Lp(M) and the constant function 1 is the unique solution of the limit problem. In particular,
gα = u2∗−2

α g0 converges to g0 only in the C1,β -topology. In addition, it follows easily that maxM Scalgα → +∞, so
that B0(2, gα) → +∞. The proof of Theorem 1.1 follows closely the same ideas above and the final contradiction is
obtained independent of any additional information on the scalar curvatures.
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