Differential Geometry

On the continuity of the second Sobolev best constant

Ezequiel R. Barbosa, Marcos Montenegro
Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970, Belo Horizonte, MG, Brazil

Received 11 July 2007; accepted after revision 12 October 2007
Available online 7 November 2007
Presented by Thierry Aubin

Abstract

In this Note we prove that the second Riemannian L^{p}-Sobolev best constant $B_{0}(p, g)$ depends continuously on g in the C^{0} topology when $1<p<2$. The situation changes significantly in the case $p=2$. In particular, we prove that $B_{0}(2, g)$ is continuous on g in the C^{2}-topology and is not in the $C^{1, \beta}$-topology. To cite this article: E.R. Barbosa, M. Montenegro, C. R. Acad. Sci. Paris, Ser I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la continuité de la deuxième meilleure constante de Sololev. Dans cette Note nous prouvons que la deuxième meilleure constante dans l'inégalité de L^{p}-Sobolev Riemannienne $B_{0}(p, g)$ dépend continûment de g dans la topologie C^{0} quand $1<p<2$. La situation change radicalement lorsque $p=2$. En particulier, nous montrons que $B_{0}(2, g)$ est continu en g dans le C^{2}-topologie et ne l'est pas dans le $C^{1, \beta}$-topologie. Pour citer cet article : E.R. Barbosa, M. Montenegro, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension $n \geqslant 2$. For $1<p<n$, we denote by $H_{1}^{p}(M)$ the standard first-order Sobolev space defined as the completion of $C^{\infty}(M)$ with respect to the norm

$$
\|u\|_{H_{1}^{p}(M)}=\left(\int_{M}\left|\nabla_{g} u\right|^{p} \mathrm{~d} v_{g}+\int_{M}|u|^{p} \mathrm{~d} v_{g}\right)^{1 / p} .
$$

The Sobolev embedding theorem ensures that the inclusion $H_{1}^{p}(M) \subset L^{p^{*}}(M)$ is continuous for $p^{*}=\frac{n p}{n-p}$. Thus, there exist constants $A, B \in \mathbb{R}$ such that, for any $u \in H_{1}^{p}(M)$,

[^0]\[

$$
\begin{equation*}
\left(\int_{M}|u|^{p^{*}} \mathrm{~d} v_{g}\right)^{p / p^{*}} \leqslant A \int_{M}\left|\nabla_{g} u\right|^{p} \mathrm{~d} v_{g}+B \int_{M}|u|^{p} \mathrm{~d} v_{g} \tag{g}
\end{equation*}
$$

\]

In this case, we say simply that $\left(I_{g}^{p}\right)$ is valid.
The first Sobolev best constant associated to $\left(I_{g}^{p}\right)$ is

$$
A_{0}(p, g)=\inf \left\{A \in \mathbb{R}: \text { there exists } B \in \mathbb{R} \text { such that }\left(I_{g}^{p}\right) \text { is valid }\right\} .
$$

The value of $A_{0}(p, g)$ was found by Aubin in [1]. This best constant is usually denoted in the literature by $K(n, p)^{p}$ since its value does not depend on the metric g.

The first optimal Riemannian L^{p}-Sobolev inequality states that, for any $u \in H_{1}^{p}(M)$,

$$
\left(\int_{M}|u|^{p^{*}} \mathrm{~d} v_{g}\right)^{p / p^{*}} \leqslant K(n, p)^{p} \int_{M}\left|\nabla_{g} u\right|^{p} \mathrm{~d} v_{g}+B \int_{M}|u|^{p} \mathrm{~d} v_{g}
$$

$$
\left(I_{g, \mathrm{opt}}^{p}\right)
$$

for some constant $B \in \mathbb{R}$. The validity of ($I_{g, \text { opt }}^{p}$) has been proved, for $p=2$, by Hebey and Vaugon [8], and for $1<p<2$, independently, by Aubin and Li [2] and Druet [6]. When $2<p<\frac{n+2}{3}$ and the scalar curvature of g is positive somewhere, Druet [5] showed the non-validity of ($I_{g, \text { opt }}^{p}$).

For $1<p \leqslant 2$, define the second L^{p}-Sobolev best constant by $B_{0}(p, g)=\inf \left\{B \in \mathbb{R}:\left(I_{g, \text { opt }}^{p}\right)\right.$ is valid $\}$. On the contrary of the first Sobolev best constant, the second one depends strongly on the metric. Note that if $\tilde{g}=\lambda g$, where $\lambda>0$ is a constant, then $B_{0}(p, \tilde{g})=\lambda^{-1} B_{0}(p, g)$. Thus, the following question arises naturally: Does $B_{0}(p, g)$ depend continuously on the metric g in some topology? Surprising, the answer to this question changes significantly from $1<p<2$ to $p=2$ as show the following results:

Theorem 1.1. Let M be a compact Riemannian manifold of dimension $n \geqslant 2$ and \mathcal{M} the space of smooth Riemannian metrics on M. Assume $1<p<\min \{2, \sqrt{n}\}$. Then, the map $g \in \mathcal{M} \mapsto B_{0}(p, g)$ is continuous in the C^{0}-topology, i.e. if the components of metric $g_{i j}^{\alpha}$ converges to $g_{i j}$ in $C^{0}(M)$, then $B_{0}\left(p, g^{\alpha}\right) \rightarrow B_{0}(p, g)$ as $\alpha \rightarrow+\infty$.

Theorem 1.2. Let M be a compact Riemannian manifold of dimension n and \mathcal{M} as in Theorem 1.1. Assume $p=2$ and $n \geqslant 4$. If $\left(g^{\alpha}\right)$ is a sequence in \mathcal{M} such that $g^{\alpha} \rightarrow g$ in $C^{0}(M)$ and Scal $_{g^{\alpha}} \rightarrow$ Scal $_{g}$ pointwise in M, where Scal denotes the scalar curvature of the metric g, then $B_{0}\left(2, g^{\alpha}\right) \rightarrow B_{0}(2, g)$ as $\alpha \rightarrow+\infty$. In particular, the map $g \in \mathcal{M} \mapsto B_{0}(2, g)$ is continuous in the C^{2}-topology. Moreover, the scalar curvature convergence or C^{2}-convergence assumption is necessary.

The proof of Theorems 1.1 and 1.2 are made by contradiction. The proofs consist in finding estimates for a family of minimizers of geometry-dependent functionals around a concentration point. These ideas are inspired in the work of Djadli and Druet [4].

2. Proof of Theorems $\mathbf{1 . 1}$ and 1.2

We present a sketch of the proof of Theorem 1.2. Let $\left(g_{\alpha}\right)$ be a sequence of metrics on M such that g_{α} converges to a metric g in the C^{0}-topology and Scal $_{g^{\alpha}}$ converges to $S_{c a l} l_{g}$ pointwise in M. Suppose, by contradiction, that there exists $\varepsilon_{0}>0$ such that $\left|B_{0}\left(2, g_{\alpha}\right)-B_{0}(2, g)\right|>\varepsilon_{0}$ for infinitely many α. Then, at least, one of the situations holds: $B_{0}(2, g)-B_{0}\left(2, g_{\alpha}\right)>\varepsilon_{0}$ or $B_{0}\left(2, g_{\alpha}\right)-B_{0}(2, g)>\varepsilon_{0}$ for infinitely many α. If the first situation holds, replacing $B_{0}\left(2, g_{\alpha}\right)$ by $B_{0}(2, g)-\varepsilon_{0}$ in the optimal inequality associated to the metric g_{α} and letting $\alpha \rightarrow+\infty$, we contradict the definition of $B_{0}(2, g)$.

Suppose then that the second situation holds, i.e. $B_{0}(2, g)+\varepsilon_{0}<B_{0}\left(2, g_{\alpha}\right)$ for infinitely many α. For each α, consider the functional

$$
J_{\alpha}(u)=\int_{M}\left|\nabla_{g_{\alpha}} u\right|^{2} \mathrm{~d} v_{g_{\alpha}}+\left(B_{0}(2, g)+\varepsilon_{0}\right) K(n, 2)^{-2} \int_{M} u^{2} \mathrm{~d} v_{g_{\alpha}}
$$

defined on $\Lambda_{\alpha}=\left\{u \in H_{1}^{2}(M): \int_{M}|u|^{2^{*}} \mathrm{~d} v_{g_{\alpha}}=1\right\}$. From the definition of $B_{0}\left(2, g_{\alpha}\right)$, it follows directly that $\lambda_{\alpha}:=$ $\inf _{\Lambda_{\alpha}} J_{\alpha}(u)<K(n, 2)^{-2}$. But this implies the existence of a non-negative minimizer $u_{\alpha} \in \Lambda_{\alpha}$ for λ_{α}. The EulerLagrange equation for u_{α} is then

$$
-\Delta_{g_{\alpha}} u_{\alpha}+\left(B_{0}(2, g)+\varepsilon_{0}\right) K(n, 2)^{-2} u_{\alpha}=\lambda_{\alpha} u_{\alpha}^{2^{*}-1}
$$

where $\Delta_{g_{\alpha}}=\operatorname{div}_{g_{\alpha}}\left(\nabla_{g_{\alpha}}\right)$ is the Laplacian operator with respect to the metric g_{α}. By the standard elliptic theory, u_{α} belongs to $C^{\infty}(M)$ and $u_{\alpha}>0$ on M. Our goal now is to study the sequence $\left(u_{\alpha}\right)_{\alpha}$ as $\alpha \rightarrow+\infty$. From the convergence $g_{\alpha} \rightarrow g$, it follows that $\left(u_{\alpha}\right)_{\alpha}$ is bounded in $H_{1}^{2}(M)$ with respect to the metric g. So, there exists $u \in H_{1}^{2}(M), u \geqslant 0$, such that $u_{\alpha} \rightharpoonup u$ weakly in $H_{1}^{2}(M)$ and $\lambda_{\alpha} \rightarrow \lambda$ as $\alpha \rightarrow+\infty$, up to a subsequence. Moreover, by the Sobolev embedding compactness theorem, one easily finds

$$
\begin{equation*}
\int_{M} u_{\alpha}^{q} \mathrm{~d} v_{g_{\alpha}} \rightarrow \int_{M} u^{q} \mathrm{~d} v_{g} \tag{1}
\end{equation*}
$$

for any $1 \leqslant q<2^{*}$. So, letting $\alpha \rightarrow+\infty$ in Eq. (E_{α}), one concludes that u satisfies

$$
\begin{equation*}
\Delta_{g} u+\left(B_{0}(2, g)+\varepsilon_{0}\right) K(n, 2)^{-2} u=\lambda u^{2^{*}-1} . \tag{E}
\end{equation*}
$$

Assume that $u \neq 0$. In this case, by $\left(J_{g, \text { opt }}^{2}\right)$ and (E), one has

$$
\begin{aligned}
\left(\int_{M} u^{2^{*}} \mathrm{~d} v_{g}\right)^{2 / 2^{*}} & <K(n, 2)^{2} \int_{M}\left|\nabla_{g} u\right|^{2} \mathrm{~d} v_{g}+\left(B_{0}(2, g)+\varepsilon_{0}\right) \int_{M} u^{2} \mathrm{~d} v_{g} \\
& =K(n, 2)^{2} \lambda \int_{M} u^{2^{*}} \mathrm{~d} v_{g} \leqslant \int_{M} u^{2^{*}} \mathrm{~d} v_{g}
\end{aligned}
$$

since $0 \leqslant \lambda \leqslant K(n, 2)^{-2}$. This implies that $\int_{M} u^{2^{*}} \mathrm{~d} v_{g}>1$. But this inequality contradicts $\int_{M} u^{2^{*}} \mathrm{~d} v_{g} \leqslant$ $\liminf \int_{M} u_{\alpha}^{2^{*}} \mathrm{~d} v_{g_{\alpha}}=1$. We then assume that $u=0$ on M and prove that this assumption leads to a contradiction. We assert, in this case, that $\lambda_{\alpha} \rightarrow K(n, 2)^{-2}$ as $\alpha \rightarrow+\infty$. In fact, noting that $\int_{M} u_{\alpha}^{2^{*}} \mathrm{~d} v_{g} \rightarrow 1$ since $u_{\alpha} \in \Lambda_{\alpha}$, and $\lim \int_{M} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}=0$ by (1), letting $\alpha \rightarrow+\infty$ in the Sobolev inequality associated to the metric g, one finds $\liminf \int_{M}\left|\nabla_{g} u_{\alpha}\right|^{2} \mathrm{~d} v_{g} \geqslant K(n, 2)^{-2}$, so that $\liminf \int_{M}\left|\nabla_{g_{\alpha}} u_{\alpha}\right|^{2} \mathrm{~d} v_{g_{\alpha}} \geqslant K(n, 2)^{-2}$. Therefore, combining this last inequality with $\int_{M}\left|\nabla_{g_{\alpha}} u_{\alpha}\right|^{2} \mathrm{~d} v_{g_{\alpha}} \leqslant \lambda$, it follows directly that $\lambda=K(n, 2)^{-2}$. Let $x_{\alpha} \in M$ be a maximum point of u_{α}, i.e $u_{\alpha}\left(x_{\alpha}\right)=\left\|u_{\alpha}\right\|_{\infty}$. Let $x_{0} \in M$ be such that $x_{\alpha} \rightarrow x_{0}$, up to a subsequence.

We divide the proof into three stages. We next only mention each one of them.
First stage: For each $R>0$, we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow+\infty} \int_{B_{g \alpha}\left(x_{\alpha}, R \mu_{\alpha}\right)} u_{\alpha}^{2^{*}} \mathrm{~d} v_{g_{\alpha}}=1-\varepsilon_{R} \tag{2}
\end{equation*}
$$

where $\mu_{\alpha}=\left\|u_{\alpha}\right\|_{\infty}^{-2^{*} / n}$ and $\varepsilon=\varepsilon(R) \rightarrow 0$ as $R \rightarrow+\infty$.
Second stage: There exist constants $c, \delta>0$, independent of α, such that $d_{g_{\alpha}}\left(x, x_{\alpha}\right)^{n / 2^{*}} u_{\alpha}(x) \leqslant c$ for all $x \in$ $\bar{B}_{g_{\alpha}}\left(x_{\alpha}, \delta\right)$, where $d_{g_{\alpha}}$ stands for the distance with respect to the metric g_{α}.

Third stage: For any $\delta>0$ small enough,

$$
\begin{equation*}
\lim _{\alpha \rightarrow+\infty} \frac{\int_{M \backslash B_{g_{\alpha}}\left(x_{0}, \delta\right)} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}}{\int_{M} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}}=0 . \tag{3}
\end{equation*}
$$

The proof of the third stage relies on the first and second ones.
We now argue with the third stage in order to obtain a contradiction. Some possibly different positive constants independent of α will be denoted by c. Combining the local isoperimetric inequality of [7] and the co-area formula, as done recently in [3], for any $\varepsilon>0$, we easily find $\delta_{\varepsilon}>0$, independent of α, such that

$$
\begin{equation*}
\left(\int_{M}|u|^{2^{*}} \mathrm{~d} v_{g_{\alpha}}\right)^{2 / 2^{*}} \leqslant K(n, 2)^{2} \int_{M}\left|\nabla_{g_{\alpha}} u\right|^{2} \mathrm{~d} v_{g_{\alpha}}+B_{\varepsilon}\left(g_{\alpha}\right) \int_{M} u^{2} \mathrm{~d} v_{g_{\alpha}} \tag{4}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}\left(B_{g_{\alpha}}\left(x_{0}, \delta_{\varepsilon}\right)\right)$, where $B_{\varepsilon}\left(g_{\alpha}\right)=\frac{n-2}{4(n-1)} K(n, 2)^{2}\left(\operatorname{Scal}_{g_{\alpha}}\left(x_{0}\right)+\varepsilon\right)$. Fix $0<\varepsilon<\varepsilon_{0}$ and consider a smooth cutoff function η_{α} such that $0 \leqslant \eta_{\alpha} \leqslant 1, \eta_{\alpha}=1$ in $B_{g_{\alpha}}\left(x_{0}, \delta_{\varepsilon} / 4\right)$ and $\eta_{\alpha}=0$ in $M \backslash B_{g_{\alpha}}\left(x_{0}, \delta_{\varepsilon} / 2\right)$. Taking $u=\eta_{\alpha} u_{\alpha}$ in (4), using the identity

$$
\int_{M}\left|\nabla_{g_{\alpha}}\left(\eta_{\alpha} u_{\alpha}\right)\right|^{2} \mathrm{~d} v_{g_{\alpha}}=-\int_{M} \eta_{\alpha}^{2} u_{\alpha} \Delta_{g_{\alpha}} u_{\alpha} \mathrm{d} v_{g_{\alpha}}+\int_{M}\left|\nabla_{g_{\alpha}} \eta_{\alpha}\right|^{2} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}
$$

Eq. $\left(E_{\alpha}\right)$ and the third stage, one arrives at

$$
\begin{aligned}
\left(\int_{M}\left|\eta_{\alpha} u_{\alpha}\right|^{2^{*}} \mathrm{~d} v_{g_{\alpha}}\right)^{2 / 2^{*}}-\int_{M} \eta_{\alpha}^{2}\left|u_{\alpha}\right|^{2^{*}} \mathrm{~d} v_{g_{\alpha}} \leqslant & -\left(B_{0}(g)+\varepsilon_{0}\right) \int_{M} \eta_{\alpha}^{2} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}+B_{\varepsilon}\left(g_{\alpha}\right) \int_{M} \eta_{\alpha}^{2} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}} \\
& +c \int_{M}\left|\nabla_{g_{\alpha}} \eta_{\alpha}\right|^{2} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}
\end{aligned}
$$

By Hölder inequality,

$$
\int_{M} \eta_{\alpha}^{2}\left|u_{\alpha}\right|^{2^{*}} \mathrm{~d} v_{g_{\alpha}} \leqslant\left(\int_{M}\left|\eta_{\alpha} u_{\alpha}\right|^{2^{*}} \mathrm{~d} v_{g_{\alpha}}\right)^{2 / 2^{*}}\left(\int_{M}\left|u_{\alpha}\right|^{2^{*}} \mathrm{~d} v_{g_{\alpha}}\right)^{\left(2^{*}-2\right) / 2^{*}} \leqslant\left(\int_{M}\left|\eta_{\alpha} u_{\alpha}\right|^{2^{*}} \mathrm{~d} v_{g_{\alpha}}\right)^{2 / 2^{*}}
$$

so that

$$
\left(B_{0}(g)-B_{\varepsilon}\left(g_{\alpha}\right)+\varepsilon_{0}\right) \int_{M} \eta^{2} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}} \leqslant c \int_{M}\left|\nabla_{g_{\alpha}} \eta_{\alpha}\right|^{2} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}
$$

This inequality imply

$$
\frac{n-2}{4(n-1)} K(n, 2)^{2}\left(\operatorname{Scal}_{g}-\operatorname{Scal}_{g_{\alpha}}\right)\left(x_{0}\right)+\varepsilon_{0}-\varepsilon \leqslant c \frac{\int_{M \backslash B_{g_{\alpha}}\left(x_{0}, \delta_{\varepsilon} / 2\right)} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}}{\int_{M} u_{\alpha}^{2} \mathrm{~d} v_{g_{\alpha}}}
$$

Letting $\alpha \rightarrow+\infty$ and applying again the third stage, we clearly find the desired contradiction. As claimed in the statement of Theorem 1.2, the scalar curvature convergence or the C^{2}-convergence assumption is necessary as shows the following example:

Let $\left(M, g_{0}\right)$ be a smooth compact Riemannian manifold of dimension $n \geqslant 4$. Let $\left(f_{\alpha}\right)_{\alpha} \subset C^{\infty}(M)$ be a sequence of positive functions converging to the constant function $f_{0}=1$ in $L^{p}(M), p>n$, such that $\max _{M} f_{\alpha} \rightarrow+\infty$. Let $u_{\alpha} \in C^{\infty}(M), u_{\alpha}>0$, be the solution of $-c(n) \Delta_{g_{0}} u+u=f_{\alpha}$, where $c(n)=\frac{4(n-1)}{n-2}$. By elliptic L^{p}-theory, it follows that $\left(u_{\alpha}\right)_{\alpha}$ is bounded in $H^{2, p}(M)$, so that u_{α} converges to u_{0} in $C^{1, \beta}(M)$ for some $0<\beta<1$. Moreover, $u_{0}=1$ since f_{α} converges to 1 in $L^{p}(M)$ and the constant function 1 is the unique solution of the limit problem. In particular, $g_{\alpha}=u_{\alpha}^{2^{*}-2} g_{0}$ converges to g_{0} only in the $C^{1, \beta}$-topology. In addition, it follows easily that $\max _{M} S_{c a l} g_{\alpha} \rightarrow+\infty$, so that $B_{0}\left(2, g_{\alpha}\right) \rightarrow+\infty$. The proof of Theorem 1.1 follows closely the same ideas above and the final contradiction is obtained independent of any additional information on the scalar curvatures.

Acknowledgements

The authors thank the referee for his valuable comments. The first author was partially supported by Fapemig.

References

[1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (4) (1976) 573-598.
[2] T. Aubin, Y.Y. Li, On the best Sobolev inequality, J. Math. Pures Appl. 78 (1999) 353-387.
[3] S. Collion, E. Hebey, M. Vaugon, Sharp Sobolev inequalities in the presence of a twist, Trans. Amer. Math. Soc. 359 (2007) $2531-2537$.
[4] Z. Djadli, O. Druet, Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var. 12 (2001) 59-84.
[5] O. Druet, Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds, J. Funct. Anal. 159 (1998) $217-242$.
[6] O. Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (1999) 327-346.
[7] O. Druet, Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc. 130 (2002) $2351-2361$.
[8] E. Hebey, M. Vaugon, Meilleures constantes dans le théorème d’inclusion de Sobolev, Ann. Inst. H. Poincaré 13 (1996) 57-93.

[^0]: E-mail addresses: ezequiel@mat.ufmg.br (E.R. Barbosa), montene@mat.ufmg.br (M. Montenegro).

