

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 499-502

http://france.elsevier.com/direct/CRASS1/

Differential Geometry

Positively curved π_2 -finite manifolds

Haydeé Herrera¹

Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102, USA

Received 8 February 2006; accepted after revision 3 October 2007

Presented by Étienne Ghys

Abstract

Let *M* be a smooth manifold with finite second homotopy group, positive sectional curvature, dimension greater than 8, and assume that a compact connected Lie group *G* acts smoothly on *M*. We prove the vanishing of the characteristic number $\hat{A}(M, TM)$ if *G* contains two commuting involutions. *To cite this article: H. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Variétés avec π_2 fini et courbure positive. Soit *M* une variété lisse avec un deuxième groupe d'homotopie fini, de courbure sectionnelle positive et de dimension plus grande que 8. Soit *G* un groupe de Lie compact et connexe qui agit de façon C^{∞} sur *M*. On démontre que le nombre caractéristique $\hat{A}(M, TM)$ s'annule si *G* contient deux involutions qui commutent entre elles. *Pour citer cet article : H. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007).*

© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The \hat{A} -genus provides a characteristic number which is the obstruction to the existence of certain geometrical structures. For instance, Lichnerowicz showed that, for a closed Riemannian Spin manifold M with positive scalar curvature, $\hat{A}(M) = 0$. Hence, the \hat{A} -genus is an obstruction to the existence of positive scalar curvature metrics on 4n-dimensional Spin manifolds. Atiyah and Hirzebruch proved the vanishing of the \hat{A} -genus on Spin manifolds admitting a non-trivial smooth circle action. This vanishing was generalized in [4] to *non-Spin manifolds with finite second homotopy group*. Thus the \hat{A} -genus is an obstruction to the existence of Lie group actions on Spin manifolds and on π_2 -finite manifolds.

In this Note we establish $\hat{A}(M, T) = \langle \hat{A}(M) \cdot ch(T), [M] \rangle$ as an obstruction to positive sectional curvature on non-Spin π_2 -finite manifolds under certain assumptions on the symmetries. Here ch(T) denotes the Chern class of the complexified tangent bundle $T = TM \otimes \mathbb{C}$. This work is an application of the rigidity theorem proved in [4], and follows [2] closely.

E-mail address: haydeeh@camden.rutgers.edu.

¹ Partially supported by NSF grant DMS-0405281.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences. doi:10.1016/j.crma.2007.10.021

In dimension 4, there is only one characteristic number $\hat{A}(M)$, since all others can be written in terms of it. In particular $\hat{A}(M, T) = -20\hat{A}(M)$. In dimension 8, there are two Pontrjagin numbers given by the classes $p_1(M)^2$ and $p_2(M)$. In this case we have that \mathbb{HP}^2 admits a metric with positive sectional curvature, $\hat{A}(\mathbb{HP}^2) = 0$, and $\hat{A}(\mathbb{HP}^2, T\mathbb{HP}^2_c) = -1 \neq 0$. In dimension greater than or equal to 12 no counterexample is known, preventing $\hat{A}(M, T)$ from becoming the obstruction to positive sectional curvature.

Despite the fact that the characteristic number $\hat{A}(M, T)$ may not be an integer and it is not the index of a Dirac operator on non-Spin manifolds, we can make use of it by means of the elliptic genus as in [4]. The main theorem of this Note is the following:

Theorem 1.1. Let M be a closed connected π_2 -finite manifold of dimension greater than 8. Suppose M admits a metric of positive sectional curvature and a smooth action by a compact connected Lie group G. Furthermore, assume that there is a subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset G$ acting effectively and isometrically on M. Then $\hat{A}(M) = 0$ and $\hat{A}(M, T) = 0$.

Recall that the signature of a 12-dimensional manifold M is given by $sign(M) = 8\hat{A}(M, T) - 32\hat{A}(M)$. Thus, we can immediately see that if M is 12-dimensional and satisfies the hypothesis of the theorem, then sign(M) = 0. Manifolds with finite second homotopy group have been considered in the context of bounded sectional curvature in [7], elliptic genera and quaternion-Kähler manifolds [4].

2. π_2 -finite manifolds with S^1 actions

Let *M* be an oriented, compact 2*n*-dimensional manifold. We say that a manifold is π_2 -finite if $|\pi_2(M)| < \infty$.

Assume *M* is endowed with a (non-trivial) smooth S^1 -action. Let M^{S^1} denote the fixed point set of the circle action. At each point $p \in M^{S^1}$, the tangent space of *M* splits as a sum of S^1 representations, $T_pM = T_pM^{S^1} \oplus L^{m_1} \oplus \cdots \oplus L^{m_k}$, where L^a denotes the S^1 representation on which $\lambda \in S^1$ acts by multiplication by λ^a . The space $T_pM^{S^1}$ is a trivial representation of S^1 . The numbers m_1, \ldots, m_k are called the *exponents* (or weights) of the S^1 -action at the point *p*. The exponents of an action are not canonical and their sign can be changed in pairs. Consider the sum of the exponents $S(p) = \sum_{i=1}^k m_i$. The number S(p) is constant on each connected component of M^{S^1} , but may vary for different connected components.

Definition 2.1. A circle action on an oriented 2*n*-dimensional manifold *M* will be called *even* if the sum $S(p) \equiv 0 \pmod{2}$ for all $p \in M^{S^1}$, and *odd* if $S(p) \equiv 1 \pmod{2}$ for all $p \in M^{S^1}$.

Lemma 2.1. (See [5].) Let M be an oriented, connected, compact 2n-dimensional manifold. Assume M is π_2 -finite and admits a smooth S^1 action. Then $S(p_1) = S(p_2)$ for all $p_1, p_2 \in M^{S^1}$. In particular, the S^1 -action is either even or odd.

Proposition 2.1. (See [5].) Let M be an oriented, connected, compact, π_2 -finite 2*n*-dimensional manifold, admitting a smooth S^1 -action. Let $\mathbb{Z}_2 = \{\pm 1\}$ be the subgroup of S^1 generated by the involution. Let X be a connected component of the \mathbb{Z}_2 -fixed point set $M^{\mathbb{Z}_2}$ such that $X \cap M^{S^1} \neq \emptyset$. Then

 $\operatorname{codim}(X) \equiv 0 \pmod{4}$ if the action is even, $\operatorname{codim}(X) \equiv 2 \pmod{4}$ if the action is odd.

3. Elliptic genera on π_2 -finite manifolds

The elliptic genus can be defined as

$$\Phi(M) = \operatorname{sign}(M, \bigotimes_{i=1}^{\infty} \bigwedge_{q^i} T \otimes \bigotimes_{j=1}^{\infty} S_{q^j} T) = \sum_{j \ge 0} \operatorname{sign}(M, R_j),$$

where $T = TM \otimes \mathbb{C}$ and $\operatorname{sign}(M, E)$ denotes the index of the signature operator twisted by the bundle E, $S_a T = \sum_{j=0}^{\infty} a^j S^j T$, $\bigwedge_a T = \sum_{j=0}^{\infty} a^j \bigwedge^j T$, and $S^j T$, $\bigwedge^j T$ denote the *j*-th symmetric and exterior tensor powers of *T*, respectively [6]. The first few R_j 's are, $R_0 = 1$, $R_1 = 2T$, etc. Witten conjectured the rigidity of this genus for Spin manifolds [9], which was proved by Bott and Taubes [1], and others. We proved that such a rigidity also holds on non-Spin π_2 -finite manifolds [4]. Moreover, the elliptic genus $\Phi(M)$ has modular properties and by changing coordinate in *q* (changing cusp) one obtains a different expression. Namely,

$$\tilde{\Phi}(M) = \hat{A}\left(M, \bigotimes_{i=2j+1>0} \bigwedge_{-q^i} T \otimes \bigotimes_{i=2j>0} S_{q^i}T\right) = \frac{1}{q^{\dim(M)/8}} \cdot \left(\sum_{j \ge 0} \hat{A}(M, R'_j)\right),$$

where $R'_0 = 1, R'_1 = -T$, etc.

Theorem 3.1. (See [5].) Let M be an oriented, connected, compact 4n-dimensional manifold with finite second homotopy group. Assume M admits a (non-trivial) smooth S^1 -action, and let $\mathbb{Z}_2 = \{\pm 1\}$ the subgroup generated by the involution $-1 \in S^1$.

- If the action is odd, then $\Phi(M) = 0$ and $\tilde{\Phi}(M) = 0$.
- If the action is even and $\operatorname{codim}(Y) \ge 4r$ for all the connected components Y of $M^{\mathbb{Z}_2}$ that contain S^1 -fixed points, then the characteristic numbers $\hat{A}(M, R'_j)$ vanish for $1 \le j \le r 1$. If $r \ge n/2$ then $\Phi(M)$ does not depend on the variable q and $\Phi(M) = \operatorname{sign}(M)$. If r > n/2, then $\Phi(M) = 0$, $\tilde{\Phi}(M) = 0$.

Corollary 3.1. Let M be a connected π_2 -finite manifold with smooth S^1 -action. Let $\mathbb{Z}_2 = \{\pm 1\}$ be the subgroup generated by the involution $-1 \in S^1$. Assume that the induced \mathbb{Z}_2 action is effective. If $\hat{A}(M, T) \neq 0$ then the S^1 action is even and the fixed point manifold $M^{\mathbb{Z}_2}$ has at least one connected component of codimension 4 with non-empty intersection with the S^1 -fixed point set M^{S^1} .

4. Totally geodesic submanifolds

The assumption of positive sectional curvature imposes strong restrictions on the totally geodesic submanifolds as the classic theorem of Frankel shows [3].

Theorem 4.1. (See [3].) Let M be a connected Riemannian manifold of positive sectional curvature. Suppose N_1 and N_2 are totally geodesic submanifolds. If dim (N_1) + dim $(N_2) \ge \dim(M)$ then $N_1 \cap N_2 \neq \emptyset$.

Theorem 4.2. (See [8].) Let M be a connected Riemannian manifold of positive sectional curvature. Suppose N is a connected totally geodesic submanifold of codimension k. Then the inclusion $j: N \hookrightarrow M$ is $(\dim(M) - 2k + 1)$ -connected.

Let $j_!: H^*(N, \mathbb{Z}) \to H^{*+k}(M, \mathbb{Z})$ be the push-forward in cohomology, and define $u := j_!(1) \in H^k(M, \mathbb{Z})$. By Theorem 4.2, the map $\cup u: H^i(M, \mathbb{Z}) \to H^{i+k}(M, \mathbb{Z})$ is injective for $k - 1 < i \leq \dim(M) - 2k + 1$ and surjective for $k - 1 \leq i < \dim(M) - 2k + 1$. It is not hard to check that one can replace the coefficients \mathbb{Z} by \mathbb{Z}_2 .

5. Proof of the theorem

Let *M* be a π_2 -finite manifolds. Thanks to theorem 1.1 of [2] we can assume *M* is non-Spin. In order to get a contradiction, assume $\hat{A}(M, T) \neq 0$. Let dim $(M) = 4m \ge 12$. Since *M* is even-dimensional and oriented with positive sectional curvature, it is simply connected by the classical Synge theorem.

Let $H = \mathbb{Z}_2 \times \mathbb{Z}_2 \subset G$ a subgroup that acts effectively and isometrically on M. Since G is connected, every element of H is contained in some S^1 -subgroup of G. Let $g_1, g_2, g_3 \in H$ denote the non-trivial elements. Each g_i is contained in a circle subgroup $S_i^1 \subset G$ acting on M. The action of S_i^1 is even and, by Corollary 3.1, there is a connected component F_i of M^{g_i} of codimension 4 containing S_i^1 -fixed points. Since M has positive sectional curvature, the other components of M^{g_i} containing S_i^1 -fixed points can only be isolated points, if any, by Theorem 4.1. The inclusion

 $F_i \hookrightarrow M$ is (4m - 7)-connected by Theorem 4.2. Thus $\pi_1(F_i) = \pi_1(M) = 1$, $\pi_2(F_i) = \pi_2(M)$ so that F_i is also π_2 -finite.

Consider $N = \bigcap_i F_i \subseteq M^H$. Notice that N is a compact subset of M^H disjoint from other components of M^H , therefore it must be a submanifold. Furthermore, since M^H is totally geodesic, then N is also totally geodesic. Let $p \in N$, the action of H on $T_p M$ splits into one-dimensional real H-representations. It is not hard to check that the subspace invariant by the infinitesimal action of H in $T_p M$ has codimension 6, i.e. the connected component of N containing p has codimension 6 in M, and codimension 2 in F_i , i = 1, 2, 3. Since dim $M \ge 12$, Theorem 4.1 implies that N is connected.

Since *N* is totally geodesic, consider the map $j: N \hookrightarrow F_1$, so that cup product with $u := j_!(1) \in H^2(F_1, \mathbb{Z}_2)$ gives an isomorphism $\cup u : H^i(F_1, \mathbb{Z}_2) \xrightarrow{\cong} H^{i+2}(F_1, \mathbb{Z}_2)$, for $1 < i \leq 4m - 8$. Together with the fact that $\cup u : H^1(F_1, \mathbb{Z}_2) \to$ $H^3(F_1, \mathbb{Z}_2)$ is onto, we get that $H^{2j+1}(F_1, \mathbb{Z}_2) = 0$, for $j \ge 0$. Therefore we have two cases: 1. u = 0 and F_1 is a \mathbb{Z}_2 -cohomology sphere, or 2. $u \ne 0$ and $H^*(F_1, \mathbb{Z}_2) = H^2(M, \mathbb{Z}_2) \ne 0$.

Case number 2 does not occur either. Here, the argument in [2] is applied by substituting M^H by N. As in the Spin case, if one assumes that $u \neq 0$ then

$$H^{i}(F_{1},\mathbb{Z}_{2}) \cong H^{i}(N,\mathbb{Z}_{2}), \quad \text{for every } i.$$

$$\tag{1}$$

On the other hand, since $4m \ge 12$ and $N \hookrightarrow F_1$ is (4m - 7)-connected, we get the following,

$$H^{2j+1}(N, \mathbb{Z}_2) = 0, \qquad H^2(F_1, \mathbb{Z}_2) \cong H^2(N, \mathbb{Z}_2),$$

and multiplication with $u|_N \in H^2(N, \mathbb{Z}_2)$ gives an isomorphism $H^i(N, \mathbb{Z}_2) \xrightarrow{\cong} H^{i+2}(N, \mathbb{Z}_2)$, for $1 < i \leq 4m - 10$. Thus,

$$\dim H^*(F_1, \mathbb{Z}_2) = \dim H^*(N, \mathbb{Z}_2) + \dim H^2(F_1, \mathbb{Z}_2).$$
(2)

Now, (2) and (1) together imply that $H^2(F_1, \mathbb{Z}_2) = 0$, which is isomorphic to $H^2(M, \mathbb{Z}_2) \neq 0$.

References

- [1] R. Bott, T. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1) (1989) 137-186.
- [2] A. Dessai, Characteristic numbers of positively curved Spin-manifolds with symmetry, Proc. Amer. Math. Soc. 133 (12) (2005) 3657–3661.
- [3] T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961) 165-174.
- [4] H. Herrera, R. Herrera, \hat{A} -genus on non-spin manifolds with S^1 actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geom. 61 (3) (2002) 341–364.
- [5] H. Herrera, R. Herrera, The signature and the elliptic genus of π_2 -finite manifolds with circle actions, Topology Appl. 136 (1–3) (2004) 251–259.
- [6] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Aspects of Mathematics, Vieweg, 1992.
- [7] A. Petrunin, W. Tuschmann, Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal. 9 (4) (1999) 736–774.
- [8] B. Wilking, Torus actions on manifolds of positive sectional curvature, Acta Math. 191 (2) (2003) 259-297.
- [9] E. Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987) 525.