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Abstract

Let M be a smooth manifold with finite second homotopy group, positive sectional curvature, dimension greater than 8, and
assume that a compact connected Lie group G acts smoothly on M . We prove the vanishing of the characteristic number Â(M,T M)

if G contains two commuting involutions. To cite this article: H. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Variétés avec π2 fini et courbure positive. Soit M une variété lisse avec un deuxième groupe d’homotopie fini, de courbure
sectionnelle positive et de dimension plus grande que 8. Soit G un groupe de Lie compact et connexe qui agit de façon C∞ sur M .
On démontre que le nombre caractéristique Â(M,T M) s’annule si G contient deux involutions qui commutent entre elles. Pour
citer cet article : H. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The Â-genus provides a characteristic number which is the obstruction to the existence of certain geometrical
structures. For instance, Lichnerowicz showed that, for a closed Riemannian Spin manifold M with positive scalar
curvature, Â(M) = 0. Hence, the Â-genus is an obstruction to the existence of positive scalar curvature metrics
on 4n-dimensional Spin manifolds. Atiyah and Hirzebruch proved the vanishing of the Â-genus on Spin manifolds
admitting a non-trivial smooth circle action. This vanishing was generalized in [4] to non-Spin manifolds with finite
second homotopy group. Thus the Â-genus is an obstruction to the existence of Lie group actions on Spin manifolds
and on π2-finite manifolds.

In this Note we establish Â(M,T ) = 〈Â(M) · ch(T ), [M]〉 as an obstruction to positive sectional curvature on
non-Spin π2-finite manifolds under certain assumptions on the symmetries. Here ch(T ) denotes the Chern class of
the complexified tangent bundle T = T M ⊗ C. This work is an application of the rigidity theorem proved in [4], and
follows [2] closely.
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In dimension 4, there is only one characteristic number Â(M), since all others can be written in terms of it. In
particular Â(M,T ) = −20Â(M). In dimension 8, there are two Pontrjagin numbers given by the classes p1(M)2

and p2(M). In this case we have that HP
2 admits a metric with positive sectional curvature, Â(HP

2) = 0, and
Â(HP

2, T HP
2
c) = −1 �= 0. In dimension greater than or equal to 12 no counterexample is known, preventing Â(M,T )

from becoming the obstruction to positive sectional curvature.
Despite the fact that the characteristic number Â(M,T ) may not be an integer and it is not the index of a Dirac

operator on non-Spin manifolds, we can make use of it by means of the elliptic genus as in [4]. The main theorem of
this Note is the following:

Theorem 1.1. Let M be a closed connected π2-finite manifold of dimension greater than 8. Suppose M admits a metric
of positive sectional curvature and a smooth action by a compact connected Lie group G. Furthermore, assume that
there is a subgroup Z2 × Z2 ⊂ G acting effectively and isometrically on M . Then Â(M) = 0 and Â(M,T ) = 0.

Recall that the signature of a 12-dimensional manifold M is given by sign(M) = 8Â(M,T ) − 32Â(M). Thus,
we can immediately see that if M is 12-dimensional and satisfies the hypothesis of the theorem, then sign(M) = 0.
Manifolds with finite second homotopy group have been considered in the context of bounded sectional curvature
in [7], elliptic genera and quaternion-Kähler manifolds [4].

2. π2-finite manifolds with S1 actions

Let M be an oriented, connected, compact 2n-dimensional manifold. We say that a manifold is π2-finite if
|π2(M)| < ∞.

Assume M is endowed with a (non-trivial) smooth S1-action. Let MS1
denote the fixed point set of the circle

action. At each point p ∈ MS1
, the tangent space of M splits as a sum of S1 representations, TpM = TpMS1 ⊕ Lm1 ⊕

· · · ⊕ Lmk , where La denotes the S1 representation on which λ ∈ S1 acts by multiplication by λa . The space TpMS1

is a trivial representation of S1. The numbers m1, . . . ,mk are called the exponents (or weights) of the S1-action at the
point p. The exponents of an action are not canonical and their sign can be changed in pairs. Consider the sum of the
exponents S(p) = ∑k

i=1 mi . The number S(p) is constant on each connected component of MS1
, but may vary for

different connected components.

Definition 2.1. A circle action on an oriented 2n-dimensional manifold M will be called even if the sum S(p) ≡
0 (mod 2) for all p ∈ MS1

, and odd if S(p) ≡ 1 (mod 2) for all p ∈ MS1
.

Lemma 2.1. (See [5].) Let M be an oriented, connected, compact 2n-dimensional manifold. Assume M is π2-finite
and admits a smooth S1 action. Then S(p1) = S(p2) for all p1,p2 ∈ MS1

. In particular, the S1-action is either even
or odd.

Proposition 2.1. (See [5].) Let M be an oriented, connected, compact, π2-finite 2n-dimensional manifold, admitting a
smooth S1-action. Let Z2 = {±1} be the subgroup of S1 generated by the involution. Let X be a connected component
of the Z2-fixed point set MZ2 such that X ∩ MS1 �= ∅. Then

codim(X) ≡ 0 (mod 4) if the action is even,

codim(X) ≡ 2 (mod 4) if the action is odd.

3. Elliptic genera on π2-finite manifolds

The elliptic genus can be defined as

Φ(M) = sign(M,

∞⊗∧
qi

T ⊗
∞⊗

Sqj T ) =
∑

sign(M,Rj ),
i=1 j=1 j�0
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where T = T M ⊗ C and sign(M,E) denotes the index of the signature operator twisted by the bundle E, SaT =∑∞
j=0 ajSjT ,

∧
a T = ∑∞

j=0 aj
∧j

T , and SjT ,
∧j

T denote the j -th symmetric and exterior tensor powers of T ,
respectively [6]. The first few Rj ’s are, R0 = 1, R1 = 2T , etc. Witten conjectured the rigidity of this genus for Spin
manifolds [9], which was proved by Bott and Taubes [1], and others. We proved that such a rigidity also holds on non-
Spin π2-finite manifolds [4]. Moreover, the elliptic genus Φ(M) has modular properties and by changing coordinate
in q (changing cusp) one obtains a different expression. Namely,

Φ̃(M) = Â

(
M,

⊗
i=2j+1>0

∧
−qi

T ⊗
⊗

i=2j>0

Sqi T

)
= 1

qdim(M)/8
·
(∑

j�0

Â(M,R′
j )

)
,

where R′
0 = 1, R′

1 = −T , etc.

Theorem 3.1. (See [5].) Let M be an oriented, connected, compact 4n-dimensional manifold with finite second
homotopy group. Assume M admits a (non-trivial) smooth S1-action, and let Z2 = {±1} the subgroup generated
by the involution −1 ∈ S1.

– If the action is odd, then Φ(M) = 0 and Φ̃(M) = 0.
– If the action is even and codim(Y ) � 4r for all the connected components Y of MZ2 that contain S1-fixed points,

then the characteristic numbers Â(M,R′
j ) vanish for 1 � j � r − 1. If r � n/2 then Φ(M) does not depend on

the variable q and Φ(M) = sign(M). If r > n/2, then Φ(M) = 0, Φ̃(M) = 0.

Corollary 3.1. Let M be a connected π2-finite manifold with smooth S1-action. Let Z2 = {±1} be the subgroup
generated by the involution −1 ∈ S1. Assume that the induced Z2 action is effective. If Â(M,T ) �= 0 then the S1

action is even and the fixed point manifold MZ2 has at least one connected component of codimension 4 with non-
empty intersection with the S1-fixed point set MS1

.

4. Totally geodesic submanifolds

The assumption of positive sectional curvature imposes strong restrictions on the totally geodesic submanifolds as
the classic theorem of Frankel shows [3].

Theorem 4.1. (See [3].) Let M be a connected Riemannian manifold of positive sectional curvature. Suppose N1 and
N2 are totally geodesic submanifolds. If dim(N1) + dim(N2) � dim(M) then N1 ∩ N2 �= ∅.

Theorem 4.2. (See [8].) Let M be a connected Riemannian manifold of positive sectional curvature. Suppose N is
a connected totally geodesic submanifold of codimension k. Then the inclusion j :N ↪→ M is (dim(M) − 2k + 1)-
connected.

Let j! :H ∗(N,Z) → H ∗+k(M,Z) be the push-forward in cohomology, and define u := j!(1) ∈ Hk(M,Z). By
Theorem 4.2, the map ∪u :Hi(M,Z) → Hi+k(M,Z) is injective for k − 1 < i � dim(M) − 2k + 1 and surjective for
k − 1 � i < dim(M) − 2k + 1. It is not hard to check that one can replace the coefficients Z by Z2.

5. Proof of the theorem

Let M be a π2-finite manifolds. Thanks to theorem 1.1 of [2] we can assume M is non-Spin. In order to get a
contradiction, assume Â(M,T ) �= 0. Let dim(M) = 4m � 12. Since M is even-dimensional and oriented with positive
sectional curvature, it is simply connected by the classical Synge theorem.

Let H = Z2 × Z2 ⊂ G a subgroup that acts effectively and isometrically on M . Since G is connected, every
element of H is contained in some S1-subgroup of G. Let g1, g2, g3 ∈ H denote the non-trivial elements. Each gi is
contained in a circle subgroup S1

i ⊂ G acting on M . The action of S1
i is even and, by Corollary 3.1, there is a connected

component Fi of Mgi of codimension 4 containing S1
i -fixed points. Since M has positive sectional curvature, the other

components of Mgi containing S1-fixed points can only be isolated points, if any, by Theorem 4.1. The inclusion
i
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Fi ↪→ M is (4m − 7)-connected by Theorem 4.2. Thus π1(Fi) = π1(M) = 1, π2(Fi) = π2(M) so that Fi is also
π2-finite.

Consider N = ⋂
i Fi ⊆ MH . Notice that N is a compact subset of MH disjoint from other components of MH ,

therefore it must be a submanifold. Furthermore, since MH is totally geodesic, then N is also totally geodesic. Let
p ∈ N , the action of H on TpM splits into one-dimensional real H -representations. It is not hard to check that the
subspace invariant by the infinitesimal action of H in TpM has codimension 6, i.e. the connected component of N

containing p has codimension 6 in M , and codimension 2 in Fi , i = 1,2,3. Since dimM � 12, Theorem 4.1 implies
that N is connected.

Since N is totally geodesic, consider the map j :N ↪→ F1, so that cup product with u := j!(1) ∈ H 2(F1,Z2) gives

an isomorphism ∪u : Hi(F1,Z2)
∼=→Hi+2(F1,Z2), for 1 < i � 4m−8. Together with the fact that ∪u :H 1(F1,Z2) →

H 3(F1,Z2) is onto, we get that H 2j+1(F1,Z2) = 0, for j � 0. Therefore we have two cases: 1. u = 0 and F1 is a
Z2-cohomology sphere, or 2. u �= 0 and H ∗(F1,Z2) is generated by H 2(F1,Z2). Case number 1 cannot occur since
we are assuming that M is non-Spin and H 2(F1,Z2) = H 2(M,Z2) �= 0.

Case number 2 does not occur either. Here, the argument in [2] is applied by substituting MH by N . As in the Spin
case, if one assumes that u �= 0 then

Hi(F1,Z2) ∼= Hi(N,Z2), for every i. (1)

On the other hand, since 4m � 12 and N ↪→ F1 is (4m − 7)-connected, we get the following,

H 2j+1(N,Z2) = 0, H 2(F1,Z2) ∼= H 2(N,Z2),

and multiplication with u|N ∈ H 2(N,Z2) gives an isomorphism Hi(N,Z2)
∼=→Hi+2(N,Z2), for 1 < i � 4m − 10.

Thus,

dimH ∗(F1,Z2) = dimH ∗(N,Z2) + dimH 2(F1,Z2). (2)

Now, (2) and (1) together imply that H 2(F1,Z2) = 0, which is isomorphic to H 2(M,Z2) �= 0.
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