Differential Geometry

Positively curved π_{2}-finite manifolds

Haydeé Herrera ${ }^{1}$
Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102, USA
Received 8 February 2006; accepted after revision 3 October 2007
Presented by Étienne Ghys

Abstract

Let M be a smooth manifold with finite second homotopy group, positive sectional curvature, dimension greater than 8 , and assume that a compact connected Lie group G acts smoothly on M. We prove the vanishing of the characteristic number $\hat{A}(M, T M)$ if G contains two commuting involutions. To cite this article: H. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Variétés avec π_{2} fini et courbure positive. Soit M une variété lisse avec un deuxième groupe d'homotopie fini, de courbure sectionnelle positive et de dimension plus grande que 8 . Soit G un groupe de Lie compact et connexe qui agit de façon C^{∞} sur M. On démontre que le nombre caractéristique $\hat{A}(M, T M)$ s'annule si G contient deux involutions qui commutent entre elles. Pour citer cet article : H. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007),
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The \hat{A}-genus provides a characteristic number which is the obstruction to the existence of certain geometrical structures. For instance, Lichnerowicz showed that, for a closed Riemannian Spin manifold M with positive scalar curvature, $\hat{A}(M)=0$. Hence, the \hat{A}-genus is an obstruction to the existence of positive scalar curvature metrics on $4 n$-dimensional Spin manifolds. Atiyah and Hirzebruch proved the vanishing of the \hat{A}-genus on Spin manifolds admitting a non-trivial smooth circle action. This vanishing was generalized in [4] to non-Spin manifolds with finite second homotopy group. Thus the \hat{A}-genus is an obstruction to the existence of Lie group actions on Spin manifolds and on π_{2}-finite manifolds.

In this Note we establish $\hat{A}(M, T)=\langle\hat{\mathcal{A}}(M) \cdot \operatorname{ch}(T),[M]\rangle$ as an obstruction to positive sectional curvature on non-Spin π_{2}-finite manifolds under certain assumptions on the symmetries. Here $\operatorname{ch}(T)$ denotes the Chern class of the complexified tangent bundle $T=T M \otimes \mathbb{C}$. This work is an application of the rigidity theorem proved in [4], and follows [2] closely.

[^0]In dimension 4, there is only one characteristic number $\hat{A}(M)$, since all others can be written in terms of it. In particular $\hat{A}(M, T)=-20 \hat{A}(M)$. In dimension 8, there are two Pontrjagin numbers given by the classes $p_{1}(M)^{2}$ and $p_{2}(M)$. In this case we have that $\mathbb{H}_{\mathbb{P}^{2}}$ admits a metric with positive sectional curvature, $\hat{A}\left(\mathbb{H} \mathbb{P}^{2}\right)=0$, and $\hat{A}\left(\mathbb{H P}^{2}, T \mathbb{H} \mathbb{P}_{c}^{2}\right)=-1 \neq 0$. In dimension greater than or equal to 12 no counterexample is known, preventing $\hat{A}(M, T)$ from becoming the obstruction to positive sectional curvature.

Despite the fact that the characteristic number $\hat{A}(M, T)$ may not be an integer and it is not the index of a Dirac operator on non-Spin manifolds, we can make use of it by means of the elliptic genus as in [4]. The main theorem of this Note is the following:

Theorem 1.1. Let M be a closed connected π_{2}-finite manifold of dimension greater than 8 . Suppose M admits a metric of positive sectional curvature and a smooth action by a compact connected Lie group G. Furthermore, assume that there is a subgroup $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \subset G$ acting effectively and isometrically on M. Then $\hat{A}(M)=0$ and $\hat{A}(M, T)=0$.

Recall that the signature of a 12 -dimensional manifold M is given by $\operatorname{sign}(M)=8 \hat{A}(M, T)-32 \hat{A}(M)$. Thus, we can immediately see that if M is 12 -dimensional and satisfies the hypothesis of the theorem, then $\operatorname{sign}(M)=0$. Manifolds with finite second homotopy group have been considered in the context of bounded sectional curvature in [7], elliptic genera and quaternion-Kähler manifolds [4].

2. π_{2}-finite manifolds with S^{1} actions

Let M be an oriented, connected, compact $2 n$-dimensional manifold. We say that a manifold is π_{2}-finite if $\left|\pi_{2}(M)\right|<\infty$.

Assume M is endowed with a (non-trivial) smooth S^{1}-action. Let $M^{S^{1}}$ denote the fixed point set of the circle action. At each point $p \in M^{S^{1}}$, the tangent space of M splits as a sum of S^{1} representations, $T_{p} M=T_{p} M^{S^{1}} \oplus L^{m_{1}} \oplus$ $\cdots \oplus L^{m_{k}}$, where L^{a} denotes the S^{1} representation on which $\lambda \in S^{1}$ acts by multiplication by λ^{a}. The space $T_{p} M^{S^{1}}$ is a trivial representation of S^{1}. The numbers m_{1}, \ldots, m_{k} are called the exponents (or weights) of the S^{1}-action at the point p. The exponents of an action are not canonical and their sign can be changed in pairs. Consider the sum of the exponents $S(p)=\sum_{i=1}^{k} m_{i}$. The number $S(p)$ is constant on each connected component of $M^{S^{1}}$, but may vary for different connected components.

Definition 2.1. A circle action on an oriented $2 n$-dimensional manifold M will be called even if the sum $S(p) \equiv$ $0(\bmod 2)$ for all $p \in M^{S^{1}}$, and odd if $S(p) \equiv 1(\bmod 2)$ for all $p \in M^{S^{1}}$.

Lemma 2.1. (See [5].) Let M be an oriented, connected, compact $2 n$-dimensional manifold. Assume M is π_{2}-finite and admits a smooth S^{1} action. Then $S\left(p_{1}\right)=S\left(p_{2}\right)$ for all $p_{1}, p_{2} \in M^{S^{1}}$. In particular, the S^{1}-action is either even or odd.

Proposition 2.1. (See [5].) Let M be an oriented, connected, compact, π_{2}-finite $2 n$-dimensional manifold, admitting a smooth S^{1}-action. Let $\mathbb{Z}_{2}=\{ \pm 1\}$ be the subgroup of S^{1} generated by the involution. Let X be a connected component of the \mathbb{Z}_{2}-fixed point set $M^{\mathbb{Z}_{2}}$ such that $X \cap M^{S^{1}} \neq \emptyset$. Then

$$
\begin{aligned}
& \operatorname{codim}(X) \equiv 0(\bmod 4) \quad \text { if the action is even, } \\
& \operatorname{codim}(X) \equiv 2(\bmod 4) \quad \text { if the action is odd. }
\end{aligned}
$$

3. Elliptic genera on $\boldsymbol{\pi}_{\mathbf{2}}$-finite manifolds

The elliptic genus can be defined as

$$
\Phi(M)=\operatorname{sign}\left(M, \bigotimes_{i=1}^{\infty} \bigwedge_{q^{i}} T \otimes \bigotimes_{j=1}^{\infty} S_{q^{j}} T\right)=\sum_{j \geqslant 0} \operatorname{sign}\left(M, R_{j}\right)
$$

where $T=T M \otimes \mathbb{C}$ and $\operatorname{sign}(M, E)$ denotes the index of the signature operator twisted by the bundle $E, S_{a} T=$ $\sum_{j=0}^{\infty} a^{j} S^{j} T, \bigwedge_{a} T=\sum_{j=0}^{\infty} a^{j} \bigwedge^{j} T$, and $S^{j} T, \bigwedge^{j} T$ denote the j-th symmetric and exterior tensor powers of T, respectively [6]. The first few R_{j} 's are, $R_{0}=1, R_{1}=2 T$, etc. Witten conjectured the rigidity of this genus for Spin manifolds [9], which was proved by Bott and Taubes [1], and others. We proved that such a rigidity also holds on nonSpin π_{2}-finite manifolds [4]. Moreover, the elliptic genus $\Phi(M)$ has modular properties and by changing coordinate in q (changing cusp) one obtains a different expression. Namely,
where $R_{0}^{\prime}=1, R_{1}^{\prime}=-T$, etc.
Theorem 3.1. (See [5].) Let M be an oriented, connected, compact $4 n$-dimensional manifold with finite second homotopy group. Assume M admits a (non-trivial) smooth S^{1}-action, and let $\mathbb{Z}_{2}=\{ \pm 1\}$ the subgroup generated by the involution $-1 \in S^{1}$.

- If the action is odd, then $\Phi(M)=0$ and $\tilde{\Phi}(M)=0$.
- If the action is even and $\operatorname{codim}(Y) \geqslant 4 r$ for all the connected components Y of $M^{\mathbb{Z}_{2}}$ that contain S^{1}-fixed points, then the characteristic numbers $\hat{A}\left(M, R_{j}^{\prime}\right)$ vanish for $1 \leqslant j \leqslant r-1$. If $r \geqslant n / 2$ then $\Phi(M)$ does not depend on the variable q and $\Phi(M)=\operatorname{sign}(M)$. If $r>n / 2$, then $\Phi(M)=0, \tilde{\Phi}(M)=0$.

Corollary 3.1. Let M be a connected π_{2}-finite manifold with smooth S^{1}-action. Let $\mathbb{Z}_{2}=\{ \pm 1\}$ be the subgroup generated by the involution $-1 \in S^{1}$. Assume that the induced \mathbb{Z}_{2} action is effective. If $\hat{A}(M, T) \neq 0$ then the S^{1} action is even and the fixed point manifold $M_{\mathbb{Z}_{2}}$ has at least one connected component of codimension 4 with nonempty intersection with the S^{1}-fixed point set $M^{S^{1}}$.

4. Totally geodesic submanifolds

The assumption of positive sectional curvature imposes strong restrictions on the totally geodesic submanifolds as the classic theorem of Frankel shows [3].

Theorem 4.1. (See [3].) Let M be a connected Riemannian manifold of positive sectional curvature. Suppose N_{1} and N_{2} are totally geodesic submanifolds. If $\operatorname{dim}\left(N_{1}\right)+\operatorname{dim}\left(N_{2}\right) \geqslant \operatorname{dim}(M)$ then $N_{1} \cap N_{2} \neq \emptyset$.

Theorem 4.2. (See [8].) Let M be a connected Riemannian manifold of positive sectional curvature. Suppose N is a connected totally geodesic submanifold of codimension k. Then the inclusion $j: N \hookrightarrow M$ is $(\operatorname{dim}(M)-2 k+1)$ connected.

Let $j!: H^{*}(N, \mathbb{Z}) \rightarrow H^{*+k}(M, \mathbb{Z})$ be the push-forward in cohomology, and define $u:=j!(1) \in H^{k}(M, \mathbb{Z})$. By Theorem 4.2, the map $\cup u: H^{i}(M, \mathbb{Z}) \rightarrow H^{i+k}(M, \mathbb{Z})$ is injective for $k-1<i \leqslant \operatorname{dim}(M)-2 k+1$ and surjective for $k-1 \leqslant i<\operatorname{dim}(M)-2 k+1$. It is not hard to check that one can replace the coefficients \mathbb{Z} by \mathbb{Z}_{2}.

5. Proof of the theorem

Let M be a π_{2}-finite manifolds. Thanks to theorem 1.1 of [2] we can assume M is non-Spin. In order to get a contradiction, assume $\hat{A}(M, T) \neq 0$. Let $\operatorname{dim}(M)=4 m \geqslant 12$. Since M is even-dimensional and oriented with positive sectional curvature, it is simply connected by the classical Synge theorem.

Let $H=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \subset G$ a subgroup that acts effectively and isometrically on M. Since G is connected, every element of H is contained in some S^{1}-subgroup of G. Let $g_{1}, g_{2}, g_{3} \in H$ denote the non-trivial elements. Each g_{i} is contained in a circle subgroup $S_{i}^{1} \subset G$ acting on M. The action of S_{i}^{1} is even and, by Corollary 3.1, there is a connected component F_{i} of $M^{g_{i}}$ of codimension 4 containing S_{i}^{1}-fixed points. Since M has positive sectional curvature, the other components of $M^{g_{i}}$ containing S_{i}^{1}-fixed points can only be isolated points, if any, by Theorem 4.1. The inclusion
$F_{i} \hookrightarrow M$ is $(4 m-7)$-connected by Theorem 4.2. Thus $\pi_{1}\left(F_{i}\right)=\pi_{1}(M)=1, \pi_{2}\left(F_{i}\right)=\pi_{2}(M)$ so that F_{i} is also π_{2}-finite.

Consider $N=\bigcap_{i} F_{i} \subseteq M^{H}$. Notice that N is a compact subset of M^{H} disjoint from other components of M^{H}, therefore it must be a submanifold. Furthermore, since M^{H} is totally geodesic, then N is also totally geodesic. Let $p \in N$, the action of H on $T_{p} M$ splits into one-dimensional real H-representations. It is not hard to check that the subspace invariant by the infinitesimal action of H in $T_{p} M$ has codimension 6, i.e. the connected component of N containing p has codimension 6 in M, and codimension 2 in $F_{i}, i=1,2,3$. Since $\operatorname{dim} M \geqslant 12$, Theorem 4.1 implies that N is connected.

Since N is totally geodesic, consider the map $j: N \hookrightarrow F_{1}$, so that cup product with $u:=j_{!}(1) \in H^{2}\left(F_{1}, \mathbb{Z}_{2}\right)$ gives an isomorphism $\cup u: H^{i}\left(F_{1}, \mathbb{Z}_{2}\right) \xlongequal{\cong} H^{i+2}\left(F_{1}, \mathbb{Z}_{2}\right)$, for $1<i \leqslant 4 m-8$. Together with the fact that $\cup u: H^{1}\left(F_{1}, \mathbb{Z}_{2}\right) \rightarrow$ $H^{3}\left(F_{1}, \mathbb{Z}_{2}\right)$ is onto, we get that $H^{2 j+1}\left(F_{1}, \mathbb{Z}_{2}\right)=0$, for $j \geqslant 0$. Therefore we have two cases: $1 . u=0$ and F_{1} is a \mathbb{Z}_{2}-cohomology sphere, or $2 . u \neq 0$ and $H^{*}\left(F_{1}, \mathbb{Z}_{2}\right)$ is generated by $H^{2}\left(F_{1}, \mathbb{Z}_{2}\right)$. Case number 1 cannot occur since we are assuming that M is non-Spin and $H^{2}\left(F_{1}, \mathbb{Z}_{2}\right)=H^{2}\left(M, \mathbb{Z}_{2}\right) \neq 0$.

Case number 2 does not occur either. Here, the argument in [2] is applied by substituting M^{H} by N. As in the Spin case, if one assumes that $u \neq 0$ then

$$
\begin{equation*}
H^{i}\left(F_{1}, \mathbb{Z}_{2}\right) \cong H^{i}\left(N, \mathbb{Z}_{2}\right), \quad \text { for every } i . \tag{1}
\end{equation*}
$$

On the other hand, since $4 m \geqslant 12$ and $N \hookrightarrow F_{1}$ is $(4 m-7)$-connected, we get the following,

$$
H^{2 j+1}\left(N, \mathbb{Z}_{2}\right)=0, \quad H^{2}\left(F_{1}, \mathbb{Z}_{2}\right) \cong H^{2}\left(N, \mathbb{Z}_{2}\right),
$$

and multiplication with $\left.u\right|_{N} \in H^{2}\left(N, \mathbb{Z}_{2}\right)$ gives an isomorphism $H^{i}\left(N, \mathbb{Z}_{2}\right) \xlongequal{\cong} H^{i+2}\left(N, \mathbb{Z}_{2}\right)$, for $1<i \leqslant 4 m-10$. Thus,

$$
\begin{equation*}
\operatorname{dim} H^{*}\left(F_{1}, \mathbb{Z}_{2}\right)=\operatorname{dim} H^{*}\left(N, \mathbb{Z}_{2}\right)+\operatorname{dim} H^{2}\left(F_{1}, \mathbb{Z}_{2}\right) \tag{2}
\end{equation*}
$$

Now, (2) and (1) together imply that $H^{2}\left(F_{1}, \mathbb{Z}_{2}\right)=0$, which is isomorphic to $H^{2}\left(M, \mathbb{Z}_{2}\right) \neq 0$.

References

[1] R. Bott, T. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1) (1989) 137-186.
[2] A. Dessai, Characteristic numbers of positively curved Spin-manifolds with symmetry, Proc. Amer. Math. Soc. 133 (12) (2005) $3657-3661$.
[3] T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961) 165-174.
[4] H. Herrera, R. Herrera, \hat{A}-genus on non-spin manifolds with S^{1} actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geom. 61 (3) (2002) 341-364.
[5] H. Herrera, R. Herrera, The signature and the elliptic genus of π_{2}-finite manifolds with circle actions, Topology Appl. 136 (1-3) (2004) 251-259.
[6] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Aspects of Mathematics, Vieweg, 1992.
[7] A. Petrunin, W. Tuschmann, Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal. 9 (4) (1999) 736-774.
[8] B. Wilking, Torus actions on manifolds of positive sectional curvature, Acta Math. 191 (2) (2003) 259-297.
[9] E. Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987) 525.

[^0]: E-mail address: haydeeh@camden.rutgers.edu.
 1 Partially supported by NSF grant DMS-0405281.

