ScienceDirect

Mathematical Analysis

The Schur-Szegö composition for hyperbolic polynomials ${ }^{\text {th }}$

Vladimir Petrov Kostov
Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, parc Valrose, 06108 Nice cedex 2, France
Received 11 April 2007; accepted 28 September 2007
Available online 29 October 2007
Presented by Jean-Pierre Kahane
To Professor X. Gómez-Mont

Abstract

The composition of Schur-Szegö of the polynomials $P(x)=\sum_{j=0}^{n} C_{n}^{j} a_{j} x^{j}$ and $Q(x)=\sum_{j=0}^{n} C_{n}^{j} b_{j} x^{j}$ is defined as $P * Q=$ $\sum_{j=0}^{n} C_{n}^{j} a_{j} b_{j} x^{j}$. In the case when P and Q are hyperbolic, i.e. with real roots only, we give the exhaustive answer to the question if the numbers of positive, negative and zero roots of P and Q are known what these numbers can be for $P * Q$. To cite this article: V.P. Kostov, C. R. Acad. Sci. Paris, Ser. I 345 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La composition de Schur-Szegö de polynômes hyperboliques. La composition de Schur-Szegö des polynômes $P(x)=$ $\sum_{j=0}^{n} C_{n}^{j} a_{j} x^{j}$ et $Q(x)=\sum_{j=0}^{n} C_{n}^{j} b_{j} x^{j}$ est définie comme $P * Q=\sum_{j=0}^{n} C_{n}^{j} a_{j} b_{j} x^{j}$. Dans le cas où P et Q sont hyperboliques, c. à d. n'ayant que des racines réelles, nous donnons la réponse exhaustive à la question si on connait les nombres de racines positives, négatives et nulles de P et Q, quels peuvent être ces nombres pour $P * Q$. Pour citer cet article : V.P. Kostov, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

La composition de Schur-Szegö des polynômes $P(x)=\sum_{j=0}^{n} C_{n}^{j} a_{j} x^{j}$ et $Q(x)=\sum_{j=0}^{n} C_{n}^{j} b_{j} x^{j}$ est définie par la formule $P_{n}^{*} Q=\sum_{j=0}^{n} C_{n}^{j} a_{j} b_{j} x^{j}$. Dans cet article on a $k \in \mathbf{N} \cup 0$.

Remarque 1. Si on considère P et Q comme des polynômes de degré $n+1$ à coefficients dominants 0 , leur composition devrait être définie par une formule différente : $P_{n+1}^{*} Q=\sum_{j=0}^{n+1}\left(\left(C_{n}^{j}\right)^{2} / C_{n+1}^{j}\right) a_{j} b_{j} x^{j}$. L'indice n sous $*$ est mis pour éviter cette ambiguité. On peut interpréter $R_{n, k}:=P_{n+k}^{*} Q$ comme la composition de deux polynômes ayant chacun une racine de multiplicité k à l'infini.

[^0]Nous considérons le cas où P et Q sont hyperboliques, c'est-à-dire dont toutes les racines sont réelles. Dans ce cas nous donnons la réponse exhaustive à la question si on connaît le nombre de racines positives, négatives et nulles de P et de Q, quels peuvent être ces nombres pour le polynôme $R_{n, k}$, voir Théorèmes 0.2 et 0.3 . On désigne par $H_{u, v, w}$ l'ensemble des polynômes hyperboliques de degré n ayant respectivement u, v et w racines strictement négatives, nulles et strictement positives.

Proposition 0.1. (1) Si $R_{n, 0} \in H_{u, v, w}$, alors pour tout k on a $R_{n, k} \in H_{u, v, w}$ et $H_{u, v, w_{n+k}}{ }^{*} H_{n, 0,0} \subset H_{u, v, w}$. Si $R_{n, 0}$ n 'est pas forcément hyperbolique et a u^{\prime} racines $<0, w^{\prime}$ racines <0 et une racine de multiplicité v^{\prime} en 0 , alors pour tout $k, R_{n, k}$ a au moins u^{\prime} racines strictement négatives, au moins w^{\prime} racines strictement positives et une racine de multiplicité v^{\prime} en 0 .
(2) Si $x_{P} \neq 0$ et $x_{Q} \neq 0$ sont racines de P et Q de multiplicité m_{P} et $m_{Q}, m_{P}+m_{Q} \geqslant n+k$, alors $-x_{P} x_{Q}$ est racine de $R_{n, k}$ de multiplicité $m_{P}+m_{Q}-n-k$.

Théorème 0.2. Supposons que P et Q sont deux polynômes complexes de degrén tels que $Q=x^{q} S, \operatorname{deg}(S)=n-q$. Alors pour tout k on a $P_{n+k}^{*} Q=\frac{(n+k-q)!}{(n+k)!} x^{q}\left(P^{(q)} \underset{n+k-q}{*} S\right)$.

Remarque 2. Dans le cas $k=0, P \in H_{u, v, w}, Q \in H_{n, 0,0}$ ou $Q \in H_{0,0, n}$, le vecteur multiplicité (VM) de $R_{n, 0}$ (c'est-àdire le vecteur dont les composantes sont les multiplicités des racines distinctes d'un polynôme hyperbolique données dans l'ordre de croissance) ne dépend que des VM de P et Q, voir [2], Proposition 1.4 et Théorème 1.6. Dans les conditions du théorème, $R_{n, 0}$ est hyperbolique et son VM dépend des VM de $P^{(q)}$ et Q.

Remarque 3. On a $P(\alpha x)_{n+k}^{*} Q(\beta x)=R_{n, k}(\alpha \beta x)$ (pour tout k et pour tout $\alpha, \beta \in \mathbf{R}^{*}$).
Considérons le cas $P \in H_{g, 0, l}, Q \in H_{r, 0, s}$. On peut assumer que $g \geqslant l$ et $s=\min (g, l, r, s)$ (si nécessaire on peut appliquer Remarque 3 avec $\alpha=-1 \mathrm{et} / \mathrm{ou} \beta=-1$).

Théorème 0.3.

(1) Dans ce cas pour tout $k, R_{n, k}$ a au moins $g-s$ racines <0 et au moins $l-s$ racines >0 (comptées avec multiplicité) et pas plus de s couples conjugués.
(2) Pour tout k et pour tous $\lambda, v \in \mathbf{N} \cup 0$ tels que $\lambda+v \leqslant s(c . a ̀ d . g-s+2 \lambda+l-s+2 v \leqslant n)$ il existe des polynômes $P \in H_{g, 0, l}, Q \in H_{r, 0, s}$ pour lesquels $R_{n, k}$ a exactement $g-s+2 \lambda$ racines simples strictement négatives et exactement $l-s+2 v$ racines simples strictement positives.

Pour considérer le cas général où P et Q peuvent avoir des racines nulles il suffit de combiner Théorème 0.3 avec Théorème 0.2 .

1. English version

The present Note is a continuation of paper [2] (which was the result of a fruitful collaboration with B.Z. Shapiro). We consider real polynomials in one real variable of the form $P(x)=\sum_{j=0}^{n} C_{n}^{j} a_{j} x^{j}$. Set $Q(x)=\sum_{j=0}^{n} C_{n}^{j} b_{j} x^{j}$. The composition of Schur-Szegö of P and Q is defined as $P_{n}^{*} Q=\sum_{j=0}^{n} C_{n}^{j} a_{j} b_{j} x^{j}$. Throughout the paper one has $k \in \mathbf{N} \cup 0$.

Remark 1. If P and Q are considered as polynomials of degree $n+1$ with leading coefficients 0 , then $P * Q$ should be defined as $\sum_{j=0}^{n+1}\left(\left(C_{n}^{j}\right)^{2} / C_{n+1}^{j}\right) a_{j} b_{j} x^{j}$ (setting $a_{n+1}=b_{n+1}=0$) which is a different formula. The index n under * is put to avoid such a possible ambiguity. One could think of $P_{n+k}^{*} Q$ as of the composition of two polynomials each of which has a k-fold root at ∞.

Example 1. One checks directly that $\left(P_{n}^{*} Q\right)^{\prime}=\frac{1}{n}\left(P_{n-1}^{\prime *} Q^{\prime}\right)$. This formula is also valid when the k first coefficients of one or both polynomials P, Q are 0 . Set $n \mapsto n+k$ and set (for the rest of the paper) $R_{n, k}:=P_{n+k}^{*} Q$. Thus one has $R_{n, k}^{\prime}=\frac{1}{n+k}\left(P^{\prime} \underset{n+k-1}{*} Q^{\prime}\right)$ for all k.

In this Note, in the case when P and Q are hyperbolic, i.e. with real roots only, we give the exhaustive answer (see Theorems 1.5 and Remarks 4, 8) to the question if the numbers of positive, negative and zero roots of P and Q are known, what these numbers can be for $R_{n, k}$.

Definition 1.1. A multiplicity vector $(M V)$ is a vector whose components equal the multiplicities of the roots of a hyperbolic polynomial listed in the increasing order. Denote by $H y p_{n}$ the set of hyperbolic polynomials of degree n and by $H_{u, v, w}$ its subset of polynomials with u negative, w positive roots (counted with multiplicity) and a v-fold root at $0, u+v+w=n$.

One has (see [2], Proposition 1.5)

$$
\begin{equation*}
H_{u, v, w}{ }_{n}^{*} H_{n, 0,0} \subset H_{u, v, w} . \tag{1}
\end{equation*}
$$

Composition of polynomials in $H_{n, 0,0}$ defines a semigroup action on the set of MVs (i.e. of ordered partitions of n), see [2], Proposition 1.4, Theorem 1.6 and Corollary 1.7.

Proposition 1.2.

(1) If $R_{n, 0} \in H_{u, v, w}$, then for all k one has $R_{n, k} \in H_{u, v, w}$ and $H_{u, v, w_{n+k}}{ }^{*} H_{n, 0,0} \subset H_{u, v, w}$. If $R_{n, 0}$ is not necessarily hyperbolic and has u^{\prime} negative, w^{\prime} positive and a v^{\prime}-fold root at 0 , then for all $k R_{n, k}$ has $\geqslant u^{\prime}$ negative, $\geqslant w^{\prime}$ positive and a v^{\prime}-fold root at 0 .
(2) If $x_{P} \neq 0$ and $x_{Q} \neq 0$ are roots of P and Q of multiplicities m_{P} and $m_{Q}, m_{P}+m_{Q} \geqslant n+k$, then $-x_{P} x_{Q}$ is a root of $R_{n, k}$ of multiplicity $m_{P}+m_{Q}-n-k$.

Indeed, one has $R_{n, k}=\sum_{j=0}^{n} C_{n}^{j} a_{j} b_{j}\left(C_{n}^{j} / C_{n+k}^{j}\right) x^{j}$, and $C_{n}^{j} / C_{n+k}^{j}=(n!/(n+k)!)(n+k-j) \cdots(n+1-j)$. Hence, $R_{n, k}$ is obtained from $n!R_{n, 0} /(n+k)$! by the following operations: (1) reverting, i.e. $R_{n, 0}(x) \mapsto x^{n} R_{n, 0}(1 / x)$ (the monomial $C_{n}^{j} a_{j} b_{j} x^{j}$ changes to $C_{n}^{j} a_{j} b_{j} x^{n-j}$); (2) multiplication by x^{k}; (3) k-fold differentiation; (4) reverting. Each of these operations doesn't decrease the number of positive and negative roots counted with multiplicity; the multiplicity of 0 as a root doesn't change; in particular, if $R_{n, 0} \in H_{u, v, w}$, then $R_{n, k} \in H_{u, v, w}$. Part (2) for $k=0$ is Proposition 1.4 of [2], for $k>0$ it follows from the k-fold differentiation in (3).

Remark 2. When $R_{n, 0} \in H y p_{n}$, then the MV of $R_{n, 0}$ defines the one of $R_{n, k}$ for all $k>0$. This follows from operations (1)-(4) used in the above proof, from the Rolle theorem and from $R_{n, k} \in H y p_{n}$ for all k, see Lemma 4.2 from [3].

Remark 3. The polynomials P and Q are apolar if $\sum_{j=0}^{n}(-1)^{j} C_{n}^{j} a_{j} b_{n-j}=0(*)$ (see more about apolarity in [4]). Suppose that $m_{P}+m_{Q}>n$ and $x_{P}=x_{Q} \neq 0$ (see part (2) of Proposition 1.2). Set $Q_{1}:=x^{n} Q(1 / x)$. Hence, $1 / x_{Q}$ is a root of Q_{1} of multiplicity m_{Q}. By Proposition 1.4 from [2], $-x_{P} / x_{Q}=-1$ is a root of $P_{n}^{*} Q_{1}$, i.e. (*) holds and P, Q are apolar.

Theorem 1.3. Suppose that P and Q are complex polynomials of degree n such that $Q=x^{q} S, \operatorname{deg}(S)=n-q$. Then for all k one has $P_{n+k}^{*} Q=\frac{(n+k-q)!}{(n+k)!} x^{q}\left(P^{(q)} \stackrel{*}{n+k-q} S\right)$.

Indeed, for $k=0$ one has $R_{n, 0}=x^{q} \sum_{j=0}^{n-q} C_{n}^{j+q} a_{j+q} b_{j+q} x^{j}$ and

$$
x^{q}\left(P^{(q)} \underset{n-q}{*} S\right)=x^{q} \sum_{j=0}^{n-q} \frac{(j+q)!}{j!} \frac{C_{n}^{j+q} a_{j+q} C_{n}^{j+q} b_{j+q}}{C_{n-q}^{j}} x^{j}=\frac{n!}{(n-q)!} x^{q} \sum_{j=0}^{n-q} C_{n}^{j+q} a_{j+q} b_{j+q} x^{j} .
$$

For $k>0$ just consider P and Q as polynomials of degree $n+k$ with k leading zero coefficients.
Remark 4. When $P \in H_{u, v, w}, Q \in H_{n-q, q, 0}, q \geqslant 1$, the theorem shows that the MV of $R_{n, 0}$ is not defined by the MVs of P and Q, but by the ones of $P^{(q)}$ and Q. In this case one has $R_{n, 0} \in H y p_{n}$ (this follows from (1) in the limit when q of the roots of Q tend to 0).

Denote by $x_{j}^{(i)}$ the roots of $P^{(i)}, i=0, \ldots, n-1, j=1, \ldots, n-i, x_{j}^{(i)} \leqslant x_{j+1}^{(i)}$. Set $x_{j}=x_{j}^{(0)}$. If $v=0$, then the Rolle theorem yields $x_{u-q}^{(q)} \leqslant x_{u}$ and $x_{u+1} \leqslant x_{u+1}^{(q)}$ whenever $x_{u-q}^{(q)}$ and/or $x_{u+1}^{(q)}$ are meaningful. One can have in particular $x_{u}<x_{u-q+1}^{(q)}<x_{u}^{(q)}<x_{u+1}$, see [3], Theorem 4.4. Hence the number 0 is either in one of the intervals $\left(x_{s}^{(q)}, x_{s+1}^{(q)}\right), s=u-q+1, \ldots, u-1$, or $\left(x_{u}, x_{u-q+1}^{(q)}\right)$, or $\left(x_{u}^{(q)}, x_{u+1}\right)$, or equals $x_{s}^{(q)}$ for $s=u-q+1, \ldots, u$. Thus one can have $R_{n, 0} \in H_{h, q, n-h-q}$ for $h=u-q, \ldots, u$ or $R_{n, 0} \in H_{h, q+1, n-h-q-1}$ for $h=u-q, \ldots, u-1$. If $v>0$, then set $m=\min (v, q)$. The theorem implies that

$$
\begin{equation*}
R_{n, 0}=\frac{(n-m)!}{n!} x^{m}\left(P_{n-m}^{(m)} \underset{n-m}{*}\left(x^{q-m} S\right)\right. \tag{2}
\end{equation*}
$$

For $m=v \leqslant q$ in the same way one sees that either $R_{n, 0} \in H_{h, q, n-h-q}$ for $h=u-q+v, \ldots, u$ or $R_{n, 0} \in$ $H_{h, q+1, n-h-q-1}$ for $h=u-q+v, \ldots, u-1$. For $v>q=m$ it follows from (2) that $R_{n, 0} \in H_{u, v, w}$ because $S \in H_{n-q, 0,0}, P^{(m)} \in H_{u, v-q, w}$ and $P^{(m)}{ }_{n-q}^{*} S \in H_{u, v-q, w}$, see (1).

Remark 5. One has $P(\alpha x)_{n+k}^{*} Q(\beta x)=R_{n, k}(\alpha \beta x)$ (for all k and for all $\alpha, \beta \in \mathbf{R}^{*}$).
Definition 1.4. For a degree n complex polynomial P as above set $A_{\zeta} P:=(\zeta-x) P^{\prime}+n P$ (the polar derivative of P w.r.t. the point $\zeta \neq \infty$; for $\zeta=\infty$ one sets $\left.A_{\zeta} P:=P^{\prime}\right)$. Hence, one has $A_{0} P(x)=\sum_{j=0}^{n}(n-j) C_{n}^{j} a_{j} x^{j}$.

Remark 6. If P is hyperbolic, then so is $A_{\zeta} P-\operatorname{sign}\left(A_{\zeta} P\right)$ changes alternatively at the roots of P^{\prime}. As $\operatorname{deg}\left(A_{\zeta} P\right) \leqslant$ $n-1$ with equality for $\zeta \neq-a_{n-1} / a_{n}$, we set

$$
A_{0}\left(A_{0} P\right)=-x\left(A_{0} P\right)^{\prime}+(n-1) A_{0} P=x^{2} P^{\prime \prime}-2(n-1) x P^{\prime}+n(n-1) P^{\prime \prime}
$$

Set $P^{[j]}=A_{0}\left(A_{0}\left(\cdots A_{0} P\right) \cdots\right)\left(j\right.$ times $\left.A_{0}\right)$. Consider P as a polynomial of degree $n+k$ with $a_{i}=0$ for $i=n+$ $1, \ldots, n+k$. Set $A_{0, k} P=(n+k) P-x P^{\prime}=P^{[1, k]}=\sum_{j=0}^{n}(n+k-j) C_{n}^{j} a_{j} x^{j}$ and $P^{[j, k]}=A_{0, k}\left(A_{0, k}\left(\cdots A_{0, k} P\right) \cdots\right)$ (j times). One has

$$
\begin{equation*}
n!\left(P_{n}^{*} Q\right)\left(-x^{2}\right)=\sum_{j=0}^{n}(-1)^{j} x^{n-j} P^{[j]}(x) Q^{(n-j)}(x) \tag{3}
\end{equation*}
$$

Indeed, one has $P^{[j]}=\sum_{\nu=0}^{n-j} C_{n}^{\nu} \frac{(n-v)!}{(n-j-v)!} a_{\nu} x^{\nu}, Q^{(n-j)}=\sum_{\nu=n-j}^{n} C_{n}^{\nu} \frac{\nu!}{(\nu-n+j)!} b_{\nu} x^{\nu-(n-j)}$ and the coefficient before x^{s} in the right hand-side of (3) equals $g_{s}:=\sum_{j=0}^{n}(-1)^{j} \sum_{\nu=0}^{s} a_{s-\nu} b_{\nu} \eta_{j, v}$ where

$$
\eta_{j, v}=C_{n}^{s-v} \frac{(n-s+v)!}{(n-j-s+v)!} C_{n}^{v} \frac{v!}{(v-n+j)!}=p_{s, \nu} C_{2 v-s}^{v-n+j}, \quad p_{s, v}=\frac{(n!)^{2}}{(n-v)!(s-v)!(2 v-s)!}
$$

(meaningless $\eta_{j, v}$ are set to be 0). Thus the coefficient before $a_{s-v} b_{v}$ in g_{s} equals $p_{s, v} \sum_{j=n-v}^{v-s+n}(-1)^{j} C_{2 v-s}^{v-n+j}=$ $p_{s, v} \delta_{v, s-v}(-1)^{n-v}=(-1)^{n-v} n!C_{n}^{v}$ if $v=s-v$, i.e. $s=2 v$, and 0 if not.

One checks directly that for $k \geqslant 1$ and for $k=a_{n}=0$ one has

$$
\begin{equation*}
P_{n+k}^{*} Q=\sum_{j=0}^{n-1} \frac{C_{n}^{j} a_{j} C_{n}^{j} b_{j} x^{j}}{C_{n+k}^{j}}=\frac{1}{n+k}\left(P_{n+k-1}^{*} Q^{[1, k]}\right)=\sum_{j=0}^{n-1} \frac{C_{n}^{j} a_{j}(n+k-j) C_{n}^{j} b_{j} x^{j}}{(n+k) C_{n+k-1}^{j}} \tag{4}
\end{equation*}
$$

Remark 7. The composition of Schur-Szegö is associative and commutative. Further we write $[P Q R]_{n}$ for $P_{n}^{*} Q_{n}^{*} R$ etc. It is easy to show that every degree n polynomial having one of its roots at (-1) (by Remark 5 this assumption is not 'too restrictive') is representable in the form $\tilde{K}:=\left[K_{a_{1}} \cdots K_{a_{n-1}}\right]_{n}$ where $K_{a}:=(x+1)^{n-1}(x+a)$. This representation is unique modulo permutation of the a_{i}. The dependence of the numbers a_{j} on the roots of the polynomial S is not trivial. E.g. for the polynomial $(x+1) x^{n-1}$ (with an $(n-1)$-fold zero at 0) one has $a_{j}=-\frac{j-1}{n-j+1}$, $j=1, \ldots, n-1$, i.e. only a_{1} is 0 . (Up to permutation of the indices j, the coefficient before x^{j-1} of $K_{a_{j}}$ must equal 0 .) For $n=3$ set $U_{\varepsilon}:=(x+1)^{2}(x-\varepsilon)$. Hence $U_{0} 3_{3}^{*} U_{0}=(x+1)(x+1 / 3) x$. For $a, b \in \mathbf{R}$ small enough $U_{a+b i}{ }_{3}^{*} U_{a-b i}$
has three distinct negative roots. For $a_{1}=\cdots=a_{n-1}=a>1$ all roots of \tilde{K} are simple and negative. This can be deduced from Proposition 1.4 and Theorem 1.6 of [2]. See more details about \tilde{K} in [1].

Consider the case $P \in H_{g, 0, l}, Q \in H_{r, 0, s}$. One can assume without loss of generality that $g \geqslant l$ and $s=$ $\min (g, l, r, s)$ (if necessary use Remark 5 with $\alpha=-1$ and/or $\beta=-1$).

Theorem 1.5.

(1) Under these assumptions for any $k, R_{n, k}$ has $\geqslant g-s$ negative and $\geqslant l-s$ positive roots counted with multiplicity, and $\leqslant s$ complex conjugate couples.
(2) For all k and for all $\lambda, v \in \mathbf{N} \cup 0$ such that $\lambda+v \leqslant s$ (i.e. $g-s+2 \lambda+l-s+2 v \leqslant n$) there exist polynomials $P \in H_{g, 0, l}, Q \in H_{r, 0, s}$ for which $R_{n, k}$ has exactly $g-s+2 \lambda$ negative and exactly $l-s+2 v$ positive simple roots.

Remark 8. The theorem is inspired by the following example: if $P=(x+\alpha)^{g}(x-\beta)^{l}, Q=(x+\gamma)^{r}(x-\delta)^{s}, \alpha, \beta, \gamma$, $\delta>0$, then by Proposition 1.4 from [2], $R_{n, 0}$ has roots $-\alpha \gamma$ and $\beta \gamma$, of multiplicities respectively $g+r-n=g-s$ and $l+r-n=l-s$. One can extend Theorem 1.5 to the case when P and Q can have roots at 0 by means of Theorem 1.3.

Proof of Theorem 1.5.

1^{0}. The theorem (parts (1) and (2)) is checked directly for $n=1$ and any k.
2^{0}. Prove directly part (2) in Case A: n is even, $g=l=r=s=n / 2$ and $\lambda=v=0$. Set $P=Q=\left(x^{2}-1\right)^{n / 2}$. Hence, $R_{n, k}$ contains only even powers of x and their coefficients are >0, i.e. $R_{n, k}$ has no real roots. Further for even n we assume that if $g=l=r=s=n / 2$, then $\lambda \geqslant \nu$, otherwise use Remark 5 with $\alpha=-1, \beta=1$ to exchange λ and ν.
3^{0}. We prove part (2) by induction on n in $3^{0}-5^{0}$. We deduce the claim for (n, k) from the one for $(n-1, k+1)$. Denote by $P \in H_{g-1,0, l}$ and $Q \in H_{r-1,0, s}$ two monic polynomials of degree $n-1$ for which $R_{n-1, k+1}:=P_{n+k}^{*} Q$ has exactly $g-1-s+2 \lambda$ negative and $l-s+2 v$ positive simple roots. Denote all the roots of $R_{n-1, k+1}$ by ζ_{i} where $\zeta_{i} \in \mathbf{R}$ for $1 \leqslant i \leqslant n-1+2 \lambda+2 v-2 s$. One has always $l-s+2 v \geqslant 0$. One has $g-1-s+2 \lambda<0$ only when n is even and $g=l=r=s=n / 2, \lambda=0$. As $\lambda \geqslant \nu$, see 2^{0}, one has $\lambda=\nu=0$ and this is Case A which was considered in 2^{0}.
4^{0}. Consider the polynomial $T:=x^{n-1}(x+1)$ as limit for $\varepsilon \rightarrow 0, \varepsilon>0$, of each of the two one-parameter families $P_{\varepsilon}:=\varepsilon^{n-1} P(x / \varepsilon)(x+1)$ and $Q_{\varepsilon}:=\varepsilon^{n-1} Q(x / \varepsilon)(x+1)$. One has $\tilde{T}:=T_{n+k}^{*} T \in H_{1, n-1,0}$ for any k. The negative root of \tilde{T} equals $-(k+1) / n$. Hence, for $\varepsilon>0$ small enough the polynomial $U_{\varepsilon}(x):=P_{\varepsilon}(x)_{n+k}^{*} Q_{\varepsilon}(x)$ has a negative simple root ξ close to $-(k+1) / n$ and $n-1$ roots close to 0 .
5^{0}. Set $x \mapsto \varepsilon x$. Hence, $P_{\varepsilon}, Q_{\varepsilon}$ become perturbations of P, Q, the root ξ of U_{ε} becomes ξ / ε, its roots close to 0 equal $\zeta_{i}+o(\varepsilon)$. For small $\varepsilon>0$ they are real, simple, different from ξ / ε and close to ζ_{i}, so U_{ε} has exactly $g-s+2 \lambda$ negative, $l-s+2 v$ positive and $2(s-\lambda-v)$ complex roots. Part (2) of the theorem is proved.
6^{0}. To prove part (1) of the theorem it suffices to consider the case $k=0$ and when all roots of P and Q are simple. For $k \geqslant 1$ the result would follow from part (1) of Proposition 1.2; it will be extended by continuity to the case when P and/or Q has multiple roots. Suppose first that $s=1$. Set $Q=(x-c) G$ where $c>0$ and all roots of G are negative. One has

$$
\begin{equation*}
V(x):=\left((x-c) G_{n}^{*} P\right)=\left((x G)_{n}^{*} P\right)-c\left(G_{n}^{*} P\right)=\frac{x}{n}\left(G_{n-1}^{*} P^{\prime}\right)-\frac{c}{n}\left(G_{n-1}^{*} P^{[1]}\right) \tag{5}
\end{equation*}
$$

see Theorem 1.3 with $k=0, q=1$, and equalities (4) with $k=a_{n}=0$. Observe that $P^{[1]}+\zeta P^{\prime}=A_{\zeta} P$, see Definition 1.4. Consider the degree $n-1$ polynomial $A_{(-\lambda / c)} P$. Set $W(x, \lambda):=(-c / n)\left(G_{n-1}^{*} A_{(-\lambda / c)} P\right)$. Hence (see (5)) one has $V(x)=W(x, x)$.
7^{0}. The polynomial $A_{(-\lambda / c)} P$ has (for every $\lambda \neq c a_{n-1} / a_{n}$ fixed) $n-1$ real simple roots depending smoothly on λ. (For $\lambda=c a_{n-1} / a_{n}$ one has $\operatorname{deg} A_{(-\lambda / c)} P<n-1$, i.e. some roots go to ∞.) The same is true for $W(x, \lambda)$ when considered as a polynomial in x. Hyperbolicity of W follows from (1) and $G \in H_{n-1,0,0}$. Simplicity of its roots follows from Theorem 1.6 in [2]; simple roots depend smoothly on parameters.
8^{0}. Denote by $x_{1}<\cdots<x_{g}<0<x_{g+1}<\cdots<x_{n}$ and $y_{1}<\cdots<y_{n-1}$ the roots of P and P^{\prime}. For all $\lambda \in \mathbf{R}$ one has $\operatorname{sign}\left(A_{(-\lambda / c)} P\left(y_{j}\right)\right)=(-1)^{n-j}$. Therefore for all $\lambda, A_{(-\lambda / c)} P$ has $\geqslant g-2$ distinct roots in $\left(y_{1}, y_{g-1}\right), \geqslant l-2$
distinct roots in $\left(y_{g+1}, y_{n-1}\right)$ and a root in $\left(y_{g-1}, y_{g+1}\right)$. By (1) the same is true for $W(x, \lambda)$. Denote the roots of $W(x, \lambda)$ by $\psi_{j}(\lambda)$.
9^{0}. For $|\lambda|$ large enough $(|\lambda| \geqslant M), A_{(-\lambda / c)} P$ has $n-1$ simple real roots which are close to the ones of P^{\prime}. For such λ all roots of $W(x, \lambda)$ belong to $\left[-N x^{*}, N x^{*}\right]$ where $x^{*}=\max \left(\left|x_{1}\right|,\left|x_{n}\right|\right)$ and N is the maximal of the modules of roots of G, see Proposition 1.2 in [2]. Suppose that $M \geqslant N x^{*}$.
10^{0}. When λ varies in $[-M, M]$, it takes $\geqslant g+l-4$ values $\lambda_{1}<\cdots<\lambda_{g-2}<0<\lambda_{g+1}<\cdots<\lambda_{n-2}$ for which one has $W\left(\lambda_{j}, \lambda_{j}\right)=0$ (apply the Bolzano theorem to the functions $\lambda-\psi_{j}(\lambda)$ on $[-M, M]$). Hence, for $x=\lambda_{j}$ one has $W(x, x)=V(x)=0$, i.e. $V(x)$ has $\geqslant g-2$ distinct negative and $\geqslant l-2$ distinct positive roots.
11^{0}. One has $\operatorname{sign}(V(0))=\operatorname{sign}(P(0)) \operatorname{sign}(Q(0))=-\operatorname{sign}(P(0))=(-1)^{n+g-1}$. If $V(x)$ has exactly $g-2$ negative roots, then $\operatorname{sign}(V(0))=(-1)^{n+g-2}$. Hence, $V(x)$ has $\geqslant g-1$ negative roots. Using Remark 5 with $\alpha=-1$, $\beta=1$, one changes the signs of the roots and finds that $V(-x)$ (resp. $V(x))$ has $\geqslant l-1$ negative (resp. positive) roots.
12^{0}. Prove part (1) for $s>1$. Denote by c_{1}, \ldots, c_{s} the positive roots of Q. Set $P_{0}=P, P_{j}=A_{\left(-\lambda / c_{j}\right)} P_{j-1}$, $j=1, \ldots, s$. For $j \geqslant 1$ the polynomials P_{j} depend on λ. One has $\operatorname{deg}\left(P_{j}\right) \leqslant n-j$ with equality for all except finitely many real values of λ, see 7^{0}.

Set $Q=\left(x-c_{1}\right) \cdots\left(x-c_{j}\right) G_{j}, 1 \leqslant j \leqslant s$, and for $j=1, \ldots, s$ set

$$
\begin{aligned}
V_{j}(x, \lambda) & =\left(\left(x-c_{j}\right) G_{j n-j+1}^{*} P_{j-1}\right)=\frac{x}{n-j+1}\left(G_{j_{n-j}}^{*} P_{j-1}^{\prime}\right)-\frac{c_{j}}{n-j+1}\left(G_{j n-j}^{*} P_{j-1}^{[1]}\right) \quad \text { and } \\
W_{j}(x, \lambda) & =-\frac{c_{j}}{n-j+1}\left(G_{j n-j}^{*} A_{\left(-\lambda / c_{j}\right)} P_{j-1}\right)
\end{aligned}
$$

Applying s times the reasoning from 8^{0} one shows that for all λ, P_{s} has $\geqslant g-s-1$ distinct roots in $\left(y_{1}, y_{g-1}\right)$ and $\geqslant l-s-1$ distinct roots in $\left(y_{g+1}, y_{n-1}\right)$. These roots depend smoothly on λ. For $|\lambda|$ large enough $\left(|\lambda| \geqslant M_{s}, M_{s}\right.$ is defined by analogy with M, see 9^{0}) the roots of P_{s} are close to the ones of $P^{(s)}$. When λ varies in $\left[-M_{s}, M_{s}\right]$, it takes $\geqslant g-s-1$ distinct negative and $\geqslant l-s-1$ positive values λ_{j} for which one has $W_{s}\left(\lambda_{j}, \lambda_{j}\right)=0$. Hence, for $x=\lambda_{j}$ one has $W_{s}(x, x)=V_{s}(x, x)=0$, i.e. V_{s} has $\geqslant g-s-1$ negative and $\geqslant l-s-1$ positive roots. As in 11^{0} one concludes that the negative (resp. positive) roots are $\geqslant g-s$ (resp. $\geqslant l-s$).

References

[1] S. Alkhatib, V.P. Kostov, The Schur-Szegö composition of real polynomials of degree 2, Revista Mat. Complut., in press.
[2] V.P. Kostov, B.Z. Shapiro, On the Schur-Szegö composition of polynomials, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 81-86.
[3] V.P. Kostov, B.Z. Shapiro, On arrangements of roots for a real hyperbolic polynomial and its derivatives, Bull. Sci. Math. 126 (1) (2002) 45-60.
[4] V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-Verlag, Berlin, 2004, xiv+301 pp.

[^0]: Research partially supported by Wenner-Grenn Foundation.
 E-mail address: kostov@math.unice.fr.

