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Abstract

We study a nonparametric functional regression model and we provide an asymptotic law with explicit constants under α-mixing
assumptions. Then we establish both pointwise confidence bands for the regression operator and asymptotic L

q errors for its kernel
estimator. To cite this article: L. Delsol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Loi et erreurs L
q asymptotiques dans un modèle de régression non-paramétrique. On étudiera dans cet article la normalité

asymptotique de l’estimateur à noyau pour des données α-mélangeantes fonctionnelles. L’explicitation des constantes apparaissant
dans la loi asymptotique permet d’établir des intervalles de confiance ponctuels pour l’opérateur de régression ainsi que l’expression
des erreurs L

q . Pour citer cet article : L. Delsol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We focus on the usual regression model: Y = r(X)+ ε, where Y is a real random variable and X a random variable
which takes values on a semi-metric space (E,d). Only regularity assumptions are made on r that is why the model
is called nonparametric. Then, we consider a dataset of n pairs (Xi, Yi) identically distributed as (X,Y ) which may
be dependent.

One considers an element x of E and estimates r(x) by the following kernel estimator:

r̂(x) =
∑n

i=1 YiK(
d(Xi ,x)

hn
)∑n

i=1 K(
d(Xi ,x)

hn
)

,

where K is a kernel function and hn a smoothing parameter. This estimator has been introduced by Ferraty and Vieu
[3] to generalise to the functional case the classical Nadaraya–Watson estimator. The results on L

q errors given below
are new even in the independent and multivariate case.
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2. Notation and main assumptions

Firstly, we introduce some key-functions which take an important place in our approach:

φ(s) = E
[(

r(X) − r(x)
) | d(X,x) = s

]
, F (h) = P

(
d(X,x) � h

)
, τh(s) = F(hs)

F (h)
.

We start with some assumptions on the model (already introduced in [2]):

r is bounded on a neighbourhood of x, (1)

F(0) = 0 and φ′(0) exists, (2)

σ 2
ε (s) := E[ε2 | X = s] is continuous on a neighbourhood of x and σ 2

ε := σ 2
ε (x) > 0, (3)

∀s ∈ [0;1], lim
n→+∞ τhn(s) = τ0(s) with τ0(s) �= 1[0;1](s). (4)

Assumption (2) enables to get the exact expression of the constants where a standard Lipschitz condition would
only give upper bounds. Then, one may note that assumptions dealing with the law of X only concern small ball
probabilities. Besides, many standard processes fulfill assumption (4). In order to control the sum of covariances we
propose the following assumptions:

∃p > 2, ∃M > 0, E
[|ε|p | X

]
� M a.s., (5)

∃C, ∀i, j ∈ Z max
(
E

[|εiεj | | Xi,Xj

]
,E

[|εi | | Xi,Xj

])
� C a.s. (6)

Finally we make some assumptions on the functional kernel estimator:

hn = O

(
1√

nF(hn)

)
, lim

n→+∞nF(hn) = +∞, (7)

K has a compact support [0;1], is C1 and non-increasing on ]0;1[,K(1) > 0. (8)

Our results will be expressed using the following constants:

M0 =
(

K(1) −
1∫

0

(
sK(s)

)′
τ0(s)ds

)
, Mj =

(
Kj(1) −

1∫
0

(Kj )′(s)τ0(s)ds

)
, j = 1,2,

and the random variable Zn defined with Bn = hnφ
′(0)

M0
M1

by:

Zn := M1√
M2σ 2

ε

√
nF(hn)

(
r̂(x) − r(x) − Bn

)
.

If (Xi, Yi) are dependent, we assume them to be α-mixing (see [7], p. 34, Notation 2.1). The mixing coefficients are
denoted by {α(n), n ∈ N} and we introduce the notations:

∀k � 2, Θk(s) := max
(

max
1�i1<···<ik�n

P
(
d(Xij , x) � s, 1 � j � k

)
, F k(s)

)
,

Γi := YiK

(
d(Xi, x)

hn

)
, Δi := K

(
d(Xi, x)

hn

)
, Ui,n = ΓiE[Δi] − ΔiE[Γi]

F(hn)
√

nF(hn)
.

We need the following assumptions:

∃(un)n∈N ∈ N
N, O

(
n[α(un)]

p−2
p

F (hn)
p−2
p

)
+ O

(
un

Θ2(hn)

F (hn)

)
n→+∞−−−−−→ 0, (H1)

and In := n

1∫
0

α−1
(

s

2

)
Q2

U1,n
(s) inf

(
3M1

√
σ 2

ε M2

2
, α−1

(
s

2

)
QU1,n

(s)

)
ds → 0, (see [6]) (H2)

where QUi,n
(x) = inf{t,P(|Ui,n| > t) � x}, and α−1( x

2 ) = inf{t, α([t]) � x
2 }. These assumptions will be simplified in

the particular case of arithmetic α-mixing coefficients (see (9) and (10) below).
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3. Asymptotic normality

Theorem 3.1. Under assumptions (1)–(8), (H1) and (H2) we get

Zn → N(0,1).

Remark. If the α-mixing coefficients are arithmetic of order a: α(i) � Ci−a , assumptions (H1) and (H2) may be
replaced, thanks to [4], by the following ones:

∃ν > 0, Θ2(hn) = O
(
F(hn)

1+ν
)
, with a >

(1 + ν)p − 2

ν(p − 2)
, (9)

∃γ > 0, nF 1+γ (hn) → +∞ and a >
2

γ
+ 1. (10)

4. Pointwise asymptotic confidence bands

To get asymptotic confidence bands one needs to estimate the constants appearing in Theorem 3.1. Whereas M1
and M2 seem to be easily estimated, the bias term is more difficult to study. To avoid this problem one makes an

additional assumption on hn which will make the bias negligible with respect to
√

nF(hn)
−1

. Taking

M̂2(x) := 1

nF̂ (hn)

n∑
i=1

K2
(

d(Xi, x)

hn

)
, M̂1(x) := 1

nF̂ (hn)

n∑
i=1

K

(
d(Xi, x)

hn

)
,

where F̂ (t) = 1
n

∑n
i=1 1[d(Xi,x),+∞[(t), we get the following corollary:

Corollary 4.1. Under assumptions of Theorem 3.1, if hn

√
nF(hn) → 0, then:

M̂1√
M̂2σ̂ 2

ε

√
nF̂ (hn)

(
r̂(x) − r(x)

) → N(0,1),

where σ̂ 2
ε is an estimator converging in probability to σ 2

ε .

5. Asymptotic expressions of L
q errors

We get directly from the asymptotic law of Zn and the uniform integrability of |Zn|q the asymptotic expressions
of the moments of order q and the L

q errors of the kernel estimator. To get the uniform integrability of |Zn|q we need
additional assumptions:

∃t, 2 � t < p, ∀k � t, ∃νk > 0, Θk(s) = O
(
F(s)1+νk

)
with νk � νk−1 + 1 and a > max

2�k�t
(k − 1)

(1 + νk)p − t

νk(p − t)
, (11)

∃u, 2 � u � p, ∃M, max
i,n

E
[|εi |u | X1, . . . ,Xn

]
� M a.s. (12)

From a statistical point of view, to choose the smoothing parameter, one often focuses on the L
q errors of the kernel

estimator. That is the aim of the following theorem in which we explicit their asymptotic dominant terms whether
q is even or not. In particular the case q odd, leads us to introduce the two following sequences of polynomials:
P2m+1(u) = ∑m

l=0 am,lu
2l+1 and Q2m+1(u) = ∑m

l=0 bm,lu
2l , where

am,l = (2m + 1)!
(2l + 1)!2(m−l)(m − l)! ,

bm,l =
m∑

j=m−l+1

[
C

2j+1
2m+1

2j j !
2j+l−m(j + l − m)! − C

2j

2m+1
(2j)!2j+l−m(j + l − m)!

2j j !(2(j + l − m))!
]

+ C
2(m−l)+1
2m+1 2m−l(m − l)!,

and the function ψm(u) = (2G(u) − 1)P2m+1(u) + 2g(u)Q2m+1(u) (with the convention that a sum on an empty set
of indices equals zero).



414 L. Delsol / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 411–414
Theorem 5.1. Under assumptions (1)–(8) and taking 
 = p in the independent case or (1)–(12) and taking

 = 2[min(t,u)

2 ] in the arithmetic α-mixing case, one gets:

(i) ∀0 � q < 
,

E
[|r̂(x) − r(x)|q] = E

[∣∣∣∣hnφ
′(0)

M0

M1
+ W

√
M2σ 2

ε

nF (hn)M
2
1

∣∣∣∣
q]

+ o

(
1

(nF (hn))
q
2

)
,

(ii) ∀0 � 2m < 
,

E
[|r̂(x) − r(x)|2m

] =
m∑

k=0

(
M2σ

2
ε

M2
1

)k(
M0
M1

φ′(0))2(m−k)(2m)!
(2(m − k))!k!2k

h
2(m−k)
n

(nF (hn))k
+ o

(
1

(nF (hn))m

)
,

(iii) ∀0 � 2m + 1 < 
,

E
[|r̂(x) − r(x)|2m+1] =

(
M2σ

2
ε

M2
1nF(hn)

)m+ 1
2

ψm

(
hnφ

′(0)M0
√

nF(hn)√
M2σ 2

ε

)
+ o

(
1

(nF (hn))
m+ 1

2

)
.

6. Conclusions and perspectives

The above results complete [2] and [5] and give explicit constants in the asymptotic law and L
q errors instead

of giving only upper bounds. Consequently, they may be used to provide confidence bands or choose the smoothing
parameter that is asymptotically optimal with regard to the L

q error. Besides they generalise former works on the L
1

(see [8]) and L
2 errors with multivariate variables to the functional case and for other orders.

For the future, it would be of interest to get an ‘integrated version’ of asymptotic normality of r̂(x) notably to
construct some specification testing procedures. It would also be interesting to get similar results for the integrated
errors. Finally, we might attempt to extend our results to a more general case of α-mixing variables introduced in [1].
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