Interpolation by functions with small spectra

Alexander Olevskii a, Alexander Ulanovskii b

a School of Mathematics, Tel Aviv University, Ramat Aviv, 69978 Israel
b Stavanger University, N-4036 Stavanger, Norway

Received 29 June 2007; accepted 18 July 2007
Available online 21 August 2007
Presented by Jean-Pierre Kahane

Abstract

We show that if \(\Lambda \) is a ‘generic’ separated sequence of reals, then there is an unbounded set \(S \) of arbitrary small measure (union of some neighborhoods of integers) such that every function on \(\Lambda \) with certain decay condition, can be interpolated by an \(L^2 \)-function with the spectrum on \(S \) (Theorem 1). This should be contrasted against results for compact spectra (Theorems 2 and 3).

1. Results

Let \(\Lambda = \{ \cdots < \lambda_{j-1} < \lambda_j < \lambda_{j+1} < \cdots, j \in \mathbb{Z} \} \) be a real sequence. We shall assume that it is separated, i.e. \(\inf_j (\lambda_j - \lambda_{j-1}) > 0 \). By \(D^+(\Lambda) \) we denote the upper uniform density of \(\Lambda \) (see [2, p. 303], [1,3]):

\[
D^+(\Lambda) := \lim_{l \to \infty} \max_{a \in \mathbb{R}} \frac{\#(\Lambda \cap (a, a + l))}{l}.
\]

Given a space of complex sequences \(X = \{ c_j, j \in \mathbb{Z} \} \), we shall say that a set \(S \subset \mathbb{R} \) is an interpolation spectrum for \(X \), if for every \(\{ c_j \} \in X \) there is a function \(F \in L^2(S) \) whose Fourier transform \(\hat{F} \) satisfies:

\[
\hat{F}(\lambda_j) = c_j, \quad j \in \mathbb{Z}.
\]

The case \(X = l^2 \) is classical. Kahane [2] proved that for a single interval \(S \) to be interpolation spectrum, it is necessary that \(\text{mes} S \geq 2\pi D^+(\Lambda) \), and it is sufficient that \(\text{mes} S > 2\pi D^+(\Lambda) \). We mention also Beurling’s result [1].
who proved that the last condition is necessary and sufficient for interpolation of l^∞ by functions bounded on \mathbb{R} with spectra on an interval S.

Simple examples show that the sufficient condition above fails already when S is a union of several intervals. However, using a new approach, Landau [3] proved that the necessary condition in Kahane’s result still holds for every bounded set S.

In the present note we show that if S is unbounded and X is a space of ‘slowly decreasing sequences’, then no such necessary condition may exist. For ‘generic’ Λ we construct interpolation spectra of arbitrary small measure:

Theorem 1. Let a separated sequence Λ be linearly independent (mod π) over the field of rational numbers. Then for every $\delta > 0$ there is a set S, a union of some of intervals centered at integers, such that:

(i) $\text{mes } S < \delta$;
(ii) for every sequence $c_j = O(|j|^{-\alpha})$, $\alpha > 1$, there is a function $F \in L^2(S)$ satisfying (1).

However, if S is a compact set, an analogue of classical results holds even for spaces X of sequences having a ‘very fast decay’.

In the next result we suppose that the sequence Λ is distributed ‘regularly’, i.e. the limit

$$D(\Lambda) := \lim_{l \to \infty} \frac{\#(\Lambda \cap (a, a + l))}{l}$$

exists uniformly with respect to a.

Theorem 2. Let S be a compact set. If for every sequence $c_j = O(e^{-|j|^\alpha})$, $0 < \alpha < 1$, there exists $F \in L^2(S)$ satisfying (1), then $\text{mes } S \geq 2\pi D(\Lambda)$.

We also prove a version of Landau’s result for ‘interpolation with error’. Denote by $\{e_j, j \in \mathbb{Z}\}$ the standard orthonormal basis in l^2.

Theorem 3. Let S be a compact set, Λ be a separated sequence and $0 < d < 1$. Suppose there is a sequence of functions $F_j \in L^2(S)$, $\sup_j \|F_j\| < \infty$, such that $\|\hat{F}_j|_{\Lambda} - e_j\|_{l^2(\mathbb{Z})} \leq d$ for all $j \in \mathbb{Z}$. Then

$$\text{mes } S \geq 2\pi \left(1 - d^2\right) D^+(\Lambda).$$

The bound (2) is sharp for every d.

2. **Proof of Theorem 1**

Here we shall sketch the proof of Theorem 1. It consists of several steps.

1. Without loss of generality we may assume that $\alpha < 2$. Fix any number β, $1 < \beta < \alpha$. Set

$$S := \bigcup_{j \in \mathbb{Z}} S_j, \quad S_j := (-M_j - 5\gamma_j, -M_j + 5\gamma_j) \cup (M_j - 5\gamma_j, M_j + 5\gamma_j),$$

where

$$\gamma_j := \frac{\gamma}{1 + |j|^\beta},$$

the sequence M_j will be specified in step 4, and γ is any small positive number such that $\text{mes } S < \delta$.

2. Set

$$\Lambda_k := (\Lambda - \lambda_k) \setminus \{0\}, \quad k \in \mathbb{Z}.$$

The independence condition on Λ implies, by Kronecker’s theorem, that for every $N > 0$ the subgroup $\{m\lambda \text{ (mod π)}, \lambda \in \Lambda_k \cap [-N, N], m \in \mathbb{Z}\}$ is dense in the $l-$dimensional torus, l being the number of elements in $\Lambda_k \cap [-N, N]$. Hence, the l numbers $|\cos(Mx)|, x \in \Lambda_k \cap [-N, N]$, can be made as small as we like by choosing appropriate $M \in \mathbb{N}$.
3. Set
\[g_j(x) := \cos(M_j(x - \lambda_j)) \left(\frac{\sin \gamma_j(x - \lambda_j)}{\gamma_j(x - \lambda_j)} \right)^5. \]
The spectrum of \(g_j \) belongs to \(S_j \), and we have
\[g_j(\lambda_j) = 1, \quad (4) \]
and
\[\|g_j\|_{L^2(\mathbb{R})}^2 \leq \text{const} \cdot (1 + |j|^\beta), \quad j \in \mathbb{Z}. \quad (5) \]

4. By Step 2, the first factor in the definition of \(g_j \) can be made arbitrarily small for \(\lambda \neq \lambda_j, |\lambda - \lambda_j| < N_j \). By using \(N_j \) large enough, one may check that for every positive \(\epsilon > 0 \) there exists a sequence \(M_j \in \mathbb{N} \) such the functions \(g_j \) are small on \(\Lambda \setminus \{\lambda_j\} \) in the sense that
\[|g_j(\lambda_k)| \leq \frac{\epsilon}{(1 + j^2)(1 + (j - k)^4)}, \quad k \neq j, k, j \in \mathbb{Z}. \quad (6) \]

5. Given a sequence \(\{c_j, j \in \mathbb{Z}\} \), set
\[\|c\|_\beta^2 := \sum_{j=-\infty}^{\infty} |c_j|^2 (1 + |j|^\beta). \]
Let \(l_\beta^2 \) denote the weighted space of all sequences \(c, \|c\|_\beta < \infty \). Using (6) and (4), one may check that the linear operator \(R \) defined by
\[R e_j := \sum_{k=-\infty}^{\infty} g_j(\lambda_k)e_k - e_j, \quad j \in \mathbb{Z}, \]
is well defined on \(l_\beta^2 \). Moreover, if \(\epsilon \) in (6) is small enough, the norm of this operator in \(l_\beta^2 \) is less than 1. It follows that the operator \(T := I + R \) is invertible in \(l_\beta^2 \), where \(I \) is the identity operator. We conclude that for every \(c \in l_\beta^2 \) the interpolation problem (1) has a solution \(F \) whose Fourier transform is given by
\[\hat{F}(x) = \sum_{j \in \mathbb{Z}} b_j g_j(x), \quad \{b_j\} = T^{-1} c \in l_\beta^2. \]

Also, by (3) and (5), we see that \(F \in L^2(S) \).

Remarks.

1. Let \(\xi_j, j \in \mathbb{Z} \), be independent identically distributed random variables having a continuous distribution function concentrated on some neighborhood of the origin. By Theorem 1, the random sequence \(\Lambda = \{n + \xi_n, n \in \mathbb{Z}\} \) has the property that for each \(\delta > 0 \), with probability one there exists a random set \(S, \text{mes} S < \delta \), such that each sequence \(c_j = O(|j|^{-\alpha}), \alpha > 1 \), can be interpolated by an \(L^2 \)-function \(f \) with the spectrum in \(S \).

2. The decay assumption in Theorem 1 cannot be replaced by \(c \in l^2 \). Let \(\Lambda \) be the random sequence above and \(X = l^2 \). Then one can show that with probability one no set \(S, \text{mes} S < 2\pi \), can serve as an interpolation spectrum for \(X \).

3. Compact spectra: interpolation with error

Here we sketch a proof of Theorem 3.

1. Claim: Let \(0 < c < 1 \) and \(W \) be a linear subspace of the Paley–Wiener space \(PW(-\pi, \pi) \), which is ‘\(c \)-concentrated on some set \(Q \)’ in the sense that
\[\int_Q |f|^2 > c\|f\|_{L^2(\mathbb{R})}^2, \quad f \in W. \]
Then
\[\dim W \leq \frac{1}{c} \mes Q + 1. \]

This follows from Landau’s Lemma 1 (compare (iii) and (viii) in [3], p. 41).

2. Fix a small number \(b > 0 \) and set \(S_b := S + (-b, b) \). Let \(\Phi \) be any infinitely smooth function supported on \((-b, b)\) satisfying \(\hat{\Phi}(0) = 1 \) and \(|\hat{\Phi}(x)| < 1, x \neq 0 \). Set
\[G_j(t) := F_j(t) \ast (e^{-i\lambda_j t} \Phi(t)). \]

Set \(f_j = \hat{F}_j \) and \(g_j = \hat{G}_j \). Clearly, each \(g_j|_A \) approximates \(e_j \) with an \(l^2 \)-error \(\leq d \). One can prove that if \(N \) is sufficiently large, then the space \(Z \) spanned by \(g_j \) when \(|\lambda_j| < N \), is \(c' \)-concentrated on the interval \(J := (1 + b)(-N, N) \), where \(c' \) can be chosen arbitrary close to 1. Hence, for all large \(N \), the space \(Y \) of the inverse Fourier transform of the functions \(g \cdot 1_J, g \in Z \), is \(c \)-concentrated on \(S_b \), again with \(c \) arbitrary close to 1. The claim above, after re-scaling, gives:
\[\dim Y \leq \frac{(1 + b)N}{\pi c} \frac{1}{\mes S_b + 1}. \]

3. Fix a large number \(N \), and denote by \(\nu = \nu(N) \) the number of points of \(A \) in \((-N, N)\). Define vectors \(v_j \) in the Euclidean space \(\mathbb{C}^\nu \) by
\[v_j(l) := g_j(\lambda_l), \quad |\lambda_l| < N. \]

Let \(V \) be the linear span of \(v_j \) in \(\mathbb{C}^\nu \). Clearly, \(\dim Y \geq \dim V \). On the other hand, each of \(v_j \) approximates the corresponding \(e_j \) with an error \(\leq d \). A well-known estimate of the Kolmogorov width of octahedron implies
\[\dim V \geq (1 - d^2) \nu. \]

4. Combining the last three inequalities, one obtains an estimate of \(\nu \). The previous argument can be repeated for each interval \((a - N, a + N)\), uniformly over \(a \). Hence, taking the limit as \(N \to \infty \), we get an estimate of \(D^+(\Lambda) \).

Finally, taking the limit as \(b \to 0 \) and \(c \to 1 \), we obtain (2).

Theorem 2 can be proved basically by the same argument (for regularly distributed \(A \)). Observe that the decay restriction in Theorem 2 can be replaced by any non quasi-analytic one.

The authors appreciate the hospitality of the Mathematisches Forschungsinstitut Oberwolfach during their research-in-pair stay, where a part of this work was completed.

References

