Abstract

Résumé

Let \((\Omega, \mathcal{A}, \mu, T)\) be a dynamical system where \(T\) is a bijective, bimeasurable and measure preserving map of \(\Omega\) onto \(\Omega\). By \(U\) we denote the operator on the space of all measurable functions on \(\Omega\) defined by \(Uf = f \circ T\), \((\mathcal{F}_i)_{i \in \mathbb{Z}}\) is a filtration, \(\mathcal{F}_i \subset T^{-1}\mathcal{F}_i = \mathcal{F}_{i+1}\). For a measurable function \(f\) we denote \(S_n(f) = \sum_{i=0}^{n-1} U^i f\). In [5], Maxwell and Woodroofe proved that if \(f \in L^2(\mathcal{F}_\infty) \ominus L^2(\mathcal{F}_{-\infty})\) is \(\mathcal{F}_0\)-measurable and

\[
\sum_{k=1}^{\infty} \frac{\|E(S_k(f) | \mathcal{F}_0)\|_2}{k^{3/2}} < \infty
\]

then there exists a martingale difference sequence \((U^i m)\) (adapted to the filtration \((\mathcal{F}_i)\)) approximating \((U^i f)\), i.e.

\[
\left\| E(S_k(f - m)) \right\|_2 = o(\sqrt{n}),
\]

which implies a central limit theorem for \((U^i f)\) (cf. [3]). In [6] Peligrad and Utev proved a new maximal inequality which implies that under (1) we get also the weak invariance principle. In [10] Volný found a method enabling to

E-mail address: dalibor.volny@univ-rouen.fr.
prove a nonadapted version of the Maxwell–Woodroofe’s CLT. In the article the martingale approximation (and hence a CLT) is proved for \(f \in L^2(F_\infty) \otimes L^2(F_{-\infty}) \) which satisfies
\[
\sum_{k=1}^{\infty} \frac{\|E(S_k(f) | F_0)\|_2}{k^{3/2}} < \infty, \quad \sum_{k=1}^{\infty} \frac{\|S_k(f) - E(S_k(f) | F_k)\|_2}{k^{3/2}} < \infty.
\] (3)

The idea of [10] is based on splitting of \(f \) into \(f = f' + f'' \) where \(f' = E(f | F_0) \) and applying an operator \(V \) which transforms the process \((U^i f'') \) into an adapted sequence \((U^i V f'') \). The assumption (3) then implies that both \((U^i f') \) and \((U^i V f'') \) satisfy (1). By the theorem of Maxwell and Woodroofe there exist martingale difference sequences \((U^i m') \) and \((U^i m'') \) adapted to \((F_i) \) and approximating \((U^i f') \) and \((U^i f'') \) respectively. For \(m = m' + m'' \), \((U^i m) \) is then a martingale difference sequence for which (2) holds true.

As shown in [4], the operator \(V \) need not correspond to any point mapping and the method thus does not give directly an invariance principle.

In this paper we will present a generalisation of the Peligrad–Utev’s maximal inequality to a larger class of processes, which will give a weak invariance principle for processes satisfying (3).

Let \(H \) be a subspace of \(L^2 \) for which \(UH \subset H \). To the operator \(U \) we associate a semigroup of contraction operators \(P_T k \), \(k = 1, 2, \ldots, \) (recall that \(Uf = f \circ T \)) on \(H \) which satisfies:

(i) \(P_T k = P_T k I \), \(k = 1, 2, \ldots; \)

(ii) \(P_T U = I \) where \(I \) is the identity operator;

(iii) if \(T f = 0 \) then \((U^i f) \) is a martingale difference sequence;

we denote \(P_T 1 = P_T = P \).

Proposition 1. Let \(f \in H \) be such that
\[
\sum_{k=1}^{\infty} \frac{\| \sum_{i=1}^{k} P^i f \|_2}{k^{3/2}} < \infty.
\]
(4)

Then there exists a constant \(C \) such that for all \(n \geq 1 \),
\[
\left\| \max_{1 \leq k \leq n} \left\| \sum_{j=0}^{k-1} U^j f \right\|_2 \right\|_2 \leq C \sqrt{n} \left(\| f \|_2 + \sum_{k=1}^{n} \| \sum_{i=1}^{k} P^i f \|_2 \right).
\]
(5)

The proof is the same as the proof of Theorem 1 in [7]; in their case it can be taken \(H = L^2(F_0) \), \(P_T f = E(Uf | F_0) \), and \(U \) then replaced by \(U^{-1} \). The inequality holds also in \(L^p \) spaces with \(1 \leq p < \infty \) (cf. [7]). In [8], Proposition 1, Tyran-Kamińska and Mackey presented the proof in an operator language and proved the inequality for \(P_T \) being the Perron–Frobenius operator. This way the inequality was proved for noninvertible endomorphisms (e.g. exact endomorphisms, where no nontrivial martingale difference sequence \((U^i m) \) can exist). In the paper of Tyran-Kamińska and Mackey, \(T \) is a noninvertible endomorphism and the filtration is decreasing, given by \(G_i = T^{-i} A, i \geq 0 \). The endomorphism can, however be seen as a factor of an automorphism (cf. [2]); there thus exists a dynamical system \((\Omega_1, A_1, \mu_1, T_1)\) where \(T_1 \) is an automorphism, a filtration \((F_i) \) where \(F_i \subset T^{-1} F_i = F_{i+1} \), such that \((\Omega, A, \mu, T)\) is isomorphic to \((\Omega_1, F_0, \mu_1, T_1^{-1})\). We take \(H = L^2(F_0) \) and define \(P_T \) by \(P_T f = U E(f | F_{-1}) = E(Uf | F_0) \). The proposition above thus includes the case of Proposition 1 in [8].

Theorem 1. Let \(f \in L^2 \) be regular, i.e. \(F_{\infty} \)-measurable, \(E(f | F_{-\infty}) = 0 \). If
\[
\sum_{k=1}^{\infty} \frac{\|S_k(f) | F_0\|}{k^{3/2}} < \infty, \quad \sum_{k=1}^{\infty} \frac{\|S_k(f) - E(S_k(f) | F_k)\|}{k^{3/2}} < \infty,
\]
(6)

then the process of \(w_n(t) = (1/\sqrt{n}) \sum_{j=0}^{[nt]} U^j f \) weakly converges to the process \(\eta^2 W \) where \(W \) is the Brownian motion and \(\eta^2 \) is independent of \(W \).
Remark that if the measure μ is ergodic (i.e. for each A measurable, A = T⁻¹ A implies that A is either of measure 0 or of measure 1), n² is constant. In the nonergodic case we get n² constant on each ergodic component of μ (cf. [9]). In [8], a calculation of n² is given. For simplifying the notation we shall suppose that μ is ergodic.

For proving Theorem 1 we need to prove the central limit theorem for finite-dimensional distributions and the tightness (cf. [1]).

The central limit theorem for finite-dimensional distributions follows from (2) which has been proved in [10].

Let us define f' = E(f | F₀), f'' = f - f'. By the invariance principle of Peligrad and Utev (cf. [6]) we have the invariance principle for f'. It thus remains to prove the tightness for f''. It follows from the next proposition:

Proposition 2. Let f ∈ L² be F∞-measurable, E(f | F₀) = 0, and

\[\sum_{k=1}^{∞} \frac{∥S_k(f) - E(S_k(f) | F_k)∥}{k^{3/2}} < ∞. \]

Then the process of \(w_n(t) = (1/\sqrt{n}) \sum_{j=0}^{[nt]} U^j f \) weakly converges to a Brownian motion.

Proof. Let \(F_i \) be a filtration with \(F_i \subset F_{i+1} = T^{-1} F_i \), \(P_{Tk}, k = 1, 2, \ldots \), a set of operators on \(H = L^2(F∞) \bigoplus L^2(F₀) \) defined by

\[P_{Tk}h = U^{-k}h - E(U^{-k}h | F₀). \]

We have \(UH \subset H \) and we will prove that (i)–(iii) are fulfilled. Remark that

\[U^k E(f | F_j) = E(U^k f | F_{j+k}). \]

(i) For \(k = 1 \) the statement is true by definition, suppose that it is true for \(k \).

\[P_{Tk}^{k+1}h = P_T(U^{-k}h - E(U^{-k}h | F₀)) \]

\[= U^{-1}(U^{-k}h - E(U^{-k}h | F₀)) - E(U^{-1}(U^{-k}h - E(U^{-k}h | F₀)) | F₀)) \]

\[= U^{-(k+1)}h - E(U^{-(k+1)}h | F₀) = P_{Tk+1}h. \]

(ii) From \(h \in H \) it follows \(E(h | F₀) = 0 \) hence \(P_T Uh = h - E(h | F₀) = h. \)

(iii) We get 0 = \(U P_T h \) hence by (8), \(h = E(h | F₁) \), i.e. \(h \) is \(F₁ \)-measurable. We have \(h \in H \), hence \(E(h | F₀) = 0 \), therefore \(h \in L²(F₁) \bigoplus L²(F₀) \). Using (8) we get that \(U^k h \in L²(F_{k+1}) \bigoplus L²(F_k) \) hence \((U^k h) \) is a martingale difference sequence.

From the fact that \(∥S_k(f) - E(S_k(f) | F_k)∥₂ = ∥U^{-k}(S_k(f) - E(S_k(f) | F_k))∥₂ = ∥\sum_{j=1}^{k} P_{Tk}^j f ∥₂ \) we by Proposition 1 deduce the maximal inequality (5).

By [10] there is a martingale approximation (2) by a stationary martingale difference sequence and in the same way as in [6] or [8] we deduce the invariance principle. □

References