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Abstract

We prove a vanishing theorem for Spinq manifolds admitting S1 actions, generalizing those of Atiyah and Hirzebruch for Spin
manifolds and Hattori for Spinc manifolds. We also prove a vanishing theorem for almost quaternionic manifolds with compatible
circle actions. To cite this article: H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Variétés Spinq et actions de S1. On montre un théorème d’annulation pour les variétés Spinq qui admettent des actions de S1,
ce qui généralise le théorème d’Atiyah et de Hirzebruch pour les variétés de Spin et celui de Hattori pour les variétés Spinc. De
plus, on montre un théorème d’annulation pour les variétés presque quaternionienne qui admettent des actions de S1 compatibles.
Pour citer cet article : H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The orthonormal frame bundle PSO of a Spin manifold admits a double cover by a bundle PSpin with fiber a Spin
group. The existence of this principal bundle gives rise to the spinor vector bundle and to the Dirac operator, which
are intimately linked to the geometry and topology of the manifold. There are manifolds, however, which do not admit
Spin structures but admit either Spinc or Spinq structures.

In this Note, we prove a vanishing theorem for characteristic numbers and indices of twisted Dirac operators (see
Theorem 3.1) generalizing those of Atiyah and Hirzebruch for Spin manifolds [1] and Hattori for Spinc manifolds [4],
and a vanishing theorem for almost quaternionic manifolds with compatible S1 actions. In Section 2, we recall prelim-
inaries on Spinq structures. In Section 3 we define twisted Dirac operators on Spinq manifolds and prove the vanishing
Theorem 3.1 for Spinq manifolds. In Section 4 we prove vanishing Theorem 4.1 for almost quaternionic manifolds.
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2. Spinq structures

Let SO(n) denote the special orthogonal group and Spin(n) its universal double-cover. The Spin group can be
‘twisted quaternionically’ by using the unit quaternions Sp(1) as follows

Spinq(n) = (
Spin(n) × Sp(1)

)
/
{±(1,1)

} = Spin(n) ×Z2 Sp(1),

and the short exact sequence 1 → Z2 → Spinq(n) → SO(n) × SO(3) → 1.

Definition 2.1. Let M be an oriented Riemannian manifold with a fixed metric and let PSO(n)(M) denote its bundle of
oriented orthonormal frames. M is called Spinq if it admits a Spinq structure consisting of a principal SO(3) bundle
PSO(3)(M), a principal Spinq(n) bundle PSpinq (n)(M) and a Spinq equivariant projection map

ξ :PSpinq (n)(M) −→ PSO(n)(M) × PSO(3)(M).

In particular, M admits a Spinq structure if and only if w2(M) = w2(PSO(3)(M)). We refer the reader to [5] for the
theory of Spin and Spinc structures, and to [6] for Spinq structures.

Let E denote the rank 3 real vector bundle associated to PSO(3)(M). Let � and H denote the locally defined
spinor bundles of T M and E respectively, where Hx

∼= H ∼= C
2 is isomorphic to the quaternions. If M is not spin,

the quaternionic spinor bundle �q = � ⊗ H is globally defined. Otherwise, if M is Spin, we can use the trivial Spinq

structure. Since Sp(1) = Spin(3) = SU(2), we can consider the representations of SU(2) given by the symmetric
tensor powers SkH of dimension k + 1. From the definition of Spinq structure, we see that w2(M) = w2(S

2H), so
that

• if w2(M) = 0, M is Spin and we can take the tensor product of � with the symmetric powers S2kH , for k � 0;
• if w2(M) �= 0, M is not Spin, but we can still take the tensor product of � with the symmetric powers S2k+1H to

get globally defined vector bundles, for k � 0.

3. Twisted Dirac operators and vanishing theorem

Let M be an 2n-dimensional oriented Riemannian manifold admitting a Spinq structure PSpinq (n)(M). The
Levi-Civita connection ω on M together with a chosen fixed connection θ on PSO(3)(M) define a connection on
PSpinq (n)(M) denoted by ∇q . The twisted Dirac operator /∂ ⊗ SkH is thus defined by

(
/∂ ⊗ SkH

)
(ψ) =

n∑
i=1

vi ∗ ∇q
vi

ψ,

where ∗ denotes Clifford multiplication, ψ ∈ �(� ⊗ SkH) and ∇q also denotes the extension of the covariant deriv-
ative to the bundles � ⊗ SkH .

By the Atiyah–Singer index theorem, the index of the twisted Dirac operators can be computed as

ind
(
/∂ ⊗ SkH

) = 〈
ch

(
SkH

)
Â(M), [M]〉,

where ch(·) denotes the Chern character, Â(M) denotes the Â-genus belonging to the characteristic power series

x/2

sinh(x/2)
= x

ex/2 − e−x/2
,

and [M] denotes the fundamental cycle of M . Since H is a rank 2 vector bundle such that H ≡ H ∗, locally (by
the splitting principle) it can be viewed as H = L1/2 ⊕ L−1/2, so that its Chern class and character are c(H) =
(1 + l/2)(1 − l/2) and ch(H) = el/2 + e−l/2 respectively, where l/2 is a formal root. In terms of formal roots, if
c(T Mc) = (1 + x1)(1 − x1) · · · (1 + xn)(1 − xn) and p(T M) = (1 + x2

1) · · · (1 + x2
n), then

ind
(
/∂ ⊗ SkH

) =
〈(

ekl/2 + e(k−2)l/2 + · · · + e−(k−2)l/2 + e−kl/2) n∏ xi

exi/2 − e−xi/2
, [M]

〉
.

i=1
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For the sake of simplicity in the notation, we shall use the Adams operators Ψ k on H instead of the symmetric
powers [3], since ch(Ψ kH) = ekl/2 + e−kl/2. In fact, by the splitting principle SkH = Ψ kH + Sk−2H , so that it is
equivalent to deal with these virtual vector bundles.

If M admits a non-trivial S1 action compatible with the Spinq structure, the equivariant version of the index can be
written in terms of the local data of the S1-fixed point set MS1

. More precisely, let z ∈ S1 be a generic element of S1.
By the Atiyah–Singer fixed point theorem [2]

ind
(
/∂ ⊗ Ψ kH

)
z
=

∑
P⊂MS1

μ(P, z)

where μ(P, z) is the local contribution of the fixed point component (submanifold) P ⊂ MS1
, which can be computed

as follows. The S1 action on M induces a decomposition of T M over P

T M|P = Lm1 + · · · + Lmn, (1)

where L corresponds to the standard representation of S1, so that z ∈ S1 acts by multiplication by zmi on Lmi . The
integers mi = mi(P ) ∈ Z are the exponents of the action at P whose signs can be changed in pairs. Thus,

μ(P, z) =
〈(

z−kh/2ekl/2 + zkh/2e−kl/2) ∏
mi=0

xi

exi/2 − e−xi/2

∏
mj �=0

1

z−mj /2exj /2 − zmj /2e−xj /2
, [P ]

〉
,

where h = h(P ) is the exponent of the action on the auxiliary rank 3 bundle E restricted to P . Furthermore, we can
consider μ(P, z) = μ+(P, z) + μ−(P, z) where

μ+(P, z) =
〈
z−kh/2ekl/2

∏
mi=0

xi

exi/2 − e−xi/2

∏
mj �=0

1

z−mj /2exj /2 − zmj /2e−xj /2
, [P ]

〉
,

μ−(P, z) =
〈
zkh/2e−kl/2

∏
mi=0

xi

exi/2 − e−xi/2

∏
mj �=0

1

z−mj /2exj /2 − zmj /2e−xj /2
, [P ]

〉
.

μ+(P, z) and μ−(P, z) are both rational functions of the complex variable z with zeroes at 0 and ∞ as long as∣∣kh(P )
∣∣ < |m1(P )| + · · · + ∣∣mn(P )

∣∣.
If such a condition is fulfilled for all P ⊂ MS1

, then f (z) = ind(/∂ ⊗ Ψ kH)z is a rational function of z with f (0) = 0
and f (∞) = 0. Notice that ind(/∂ ⊗Ψ kH)z also belongs to the representation ring R(S1) of S1 which can be identified
with the Laurent polynomial ring Z[z, z−1]. Hence, f (z) must be identically zero and

ind
(
/∂ ⊗ Ψ kH

) = ind
(
/∂ ⊗ Ψ kH

)
1 = 0.

Thus we have proved the following:

Theorem 3.1. Let M be a Spinq manifold admitting a non-trivial smooth S1 action lifting to the Spinq structure. Let H

denote the (locally defined) rank 2 vector bundle given by the Spinq structure. Let k0 ∈ Z be the greatest non-negative
integer such that the twisted Dirac operator /∂ ⊗ Sk0H is well-defined and∣∣k0h(P )

∣∣ <
∣∣m1(P )

∣∣ + · · · + ∣∣mn(P )
∣∣

for all components P ⊂ MS1
, where h(P ) and mi(P ) denote the exponents of the S1 actions on the auxiliary bundle

PSO(3) and the tangent bundle T M restricted to P respectively. Then〈
ch

(
Â(M)SkH

)
, [M]〉 = 0

for all 0 � k � k0 and k ≡ k0 (mod 2).
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4. Almost quaternionic manifolds

A 4n-dimensional manifold M , n > 1, is called almost quaternionic if there is a rank 3 sub-bundle Q of the
endomorphism bundle End(T M) = T ∗M ⊗T M such that locally Q has an (admissible) basis {I, J,K} satisfying the
relations I 2 = J 2 = −1 and K = IJ,−JI . The existence of the sub-bundle Q implies the reduction of structure of
the frame bundle of M to a sub-bundle P with structure group Gln(H) ×Z2 Sp(1) ⊂ Gl4n(R). Thus, the complexified
tangent bundle of M has the form

T Mc = E ⊗ H, (2)

where E and H correspond to the standard complex representations C
2n and C

2 of Gln(H) and Sp(1) respectively.
The bundle Q naturally endows this type of manifold with a Spinq structure [6].

Theorem 4.1. Let M be a 4n-dimensional almost quaternionic manifold admitting a (non-trivial) smooth S1 action
preserving the almost quaternionic structure Q. Then〈

ch
(
SkH

)
Â(M), [M]〉 = 0

for all 0 � k < n with k ≡ n (mod 2), where SkH denotes the k-th symmetric power of the factor H of T Mc described
above.

Proof. First, choose a Riemannian metric on M and average it over the circle action. Using this metric, define a
quaternionic-Hermitian metric in the usual way. With these choices, the manifold M is now an almost quaternion-
Hermitian with a compatible isometric circle action. Its structure group reduces to Sp(n)Sp(1), so that H ∼= H ∗ and
E ∼= E∗. Since the S1 action preserves the Sp(n)Sp(1) structure, it preserves the bundles associated to it, such as
H ⊗ H , E ⊗ E.

Let P ⊂ MS1
be an S1-fixed submanifold. Since S1 consists of automorphisms of the Sp(n)Sp(1) structure, the

locally defined bundles H and E also split along P

H |P = Lh/2 + L−h/2, E|P = Le1/2 + L−e1/2 + · · · + Len/2 + L−en/2,

with integers ej = ej (P ) ∈ Z and h = h(P ) ∈ Z. By (1) and (2),

±mi = ea + h

2
or ± mi = ea − h

2
for some 1 � a � n. Thus, the inequality of Theorem 3.1 is

|kh| < 1

2

n∑
i=1

(|h + ei | + |h − ei |
)
.

If we choose the signs of the exponents mi appropriately, we have k|h| < n|h|, i.e. k < n. �
Acknowledgements

The second named author wishes to thank the Max Planck Institute for Mathematics (Bonn) for its hospitality and
support.

References

[1] M. Atiyah, F. Hirzebruch, Spin-manifolds and group actions, in: Essays on Topology and Related Topics (Mémoires dédiés à Georges de
Rham), Springer, New York, 1970, pp. 18–28.

[2] M.F. Atiyah, I.M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968) 546–604.
[3] W. Fulton, S. Lang, Riemann–Roch Algebra, Fundamental Principles of Mathematical Sciences, vol. 277, Springer-Verlag, New York, 1985,

x+203 pp.
[4] A. Hattori, Spinc-structures and S1-actions, Invent. Math. 48 (1) (1978) 7–31.
[5] H.B. Lawson Jr., M. Michelsohn, Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989,

xii+427 pp.
[6] M. Nagase, Spinq structures, J. Math. Soc. Japan 47 (1) (1995) 93–119.


