

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 733-736

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Number Theory

The André–Oort conjecture for Drinfeld modular varieties

Florian Breuer

Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa

Received 15 February 2007; accepted after revision 4 May 2007

Available online 20 June 2007

Presented by Laurent Lafforgue

Abstract

We state an analogue of the André–Oort conjecture for subvarieties of Drinfeld modular varieties, and prove it in two special cases. *To cite this article: F. Breuer, C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La conjecture d'André-Oort pour les variétées modulaires de Drinfeld. Nous énoncons un analogue de la conjecture d'André-Oort pour les sous-variétées des variétées modulaires de Drinfeld, et nous le démontrons dans deux cas. *Pour citer cet article : F. Breuer, C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The André–Oort conjecture for complex Shimura varieties states that any closed subvariety X of a Shimura variety S/\mathbb{C} containing a Zariski-dense set of special points must be of Hodge type. For an overview, see [3] or [5]. Recently, Bruno Klingler, Emmanuel Ullmo and Andrei Yafaev have announced a proof of this conjecture assuming the Generalised Riemann Hypothesis.

In the current Note we will study an analogue of this conjecture for Drinfeld modular varieties, and outline a proof for two special cases.

Let C/\mathbb{F}_q be a smooth projective geometrically connected algebraic curve with function field K, choose a closed point ∞ on C, and define $A = H^0(C \setminus \infty, \mathcal{O}_C)$. We denote by K_∞ the completion of K at ∞ , and by $\mathbb{C}_\infty = \hat{K}_\infty$ the completion of an algebraic closure of K_∞ . We denote by $\mathbb{A}_f = \hat{A} \otimes K$ the ring of finite adèles of K.

For an open subgroup $\mathcal{K} \subset \operatorname{GL}_r(\hat{A})$, we denote by $M_A^r(\mathcal{K})$ the coarse moduli scheme for rank *r* Drinfeld *A*-modules with \mathcal{K} -level structure. We write $M_A^r(1)$ for $M_A^r(\operatorname{GL}_r(\hat{A}))$, the coarse moduli scheme for Drinfeld modules without level structure.

E-mail address: fbreuer@sun.ac.za.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.05.008

Definition 1.1. A closed irreducible subvariety $X \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ is called *special* if X is an irreducible component of the locus of Drinfeld A-modules with endomorphism ring containing a given ring. A point $x \in M_A^r(\mathcal{K})(\mathbb{C}_{\infty})$ is called a *CM point* if it corresponds to a Drinfeld module φ with complex multiplication.

We see that CM points are precisely the special subvarieties of dimension zero. Our analogue of the André–Oort conjecture is the following:

Conjecture 1.2. A closed irreducible subvariety $X \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ contains a Zariski-dense set of CM points if and only if X is special.

We will sketch the following theorems, the first being an (unconditional) analogue of a result of Bas Edixhoven and Andrei Yafaev [3, Theorem 1.2], and the second an analogue of a result of Ben Moonen [4, §5]. Our approach is an adaptation of that of Edixhoven and Yafaev.

Theorem 1.3. Let $X \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ be an irreducible algebraic subcurve. Then X contains infinitely many CM points if and only if X is special. In particular, Conjecture 1.2 is true if r = 3.

Theorem 1.4. Let $\mathfrak{p} \subset A$ be a non-zero prime, and $n \in \mathbb{N}$ a positive integer. Let $X \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ be a closed irreducible subvariety containing a Zariski-dense set of CM points x with the following property: Denote by \mathcal{O}_x the endomorphism ring of a Drinfeld module representing x. Then there is an unramified prime $\mathfrak{P}|\mathfrak{p}$ of $\mathcal{O}_x \otimes_A K$ such that the residue degree $f(\mathfrak{P}|\mathfrak{p}) = 1$, and \mathfrak{p}^n does not divide the conductor of \mathcal{O}_x in its integral closure. Then X is a special subvariety.

2. Analytic theory

Denote by $\Omega^r := \mathbb{P}^{r-1}(\mathbb{C}_{\infty}) \setminus \{\text{linear subspaces defined over } K_{\infty}\}$ Drinfeld's upper half-space, on which $\operatorname{GL}_r(K_{\infty})$ acts. Then we have, as rigid analytic varieties,

$$M^r_A(\mathcal{K})^{\mathrm{an}}_{\mathbb{C}_{\infty}} \cong \mathrm{GL}_r(K) \setminus \Omega^r \times \mathrm{GL}_r(\mathbb{A}_f) / \mathcal{K} \cong \coprod_{s \in S} \Gamma_s \setminus \Omega^r,$$

where S denotes a finite set of representatives for $\operatorname{GL}_r(K) \setminus \operatorname{GL}_r(\mathbb{A}_f) / \mathcal{K}$, and $\Gamma_s = s \mathcal{K} s^{-1} \cap \operatorname{GL}_r(K)$.

The group $\operatorname{GL}_r(\mathbb{A}_f)$ acts from the left on $\Omega \times \operatorname{GL}_r(\mathbb{A}_f)$ via $g \cdot (\omega, h) = (\omega, hg^{-1})$, and this induces the *Hecke* correspondence T_g on $M_A^r(\mathcal{K})$, which factors through $M_A^r(\mathcal{K}_g)$, where $\mathcal{K}_g = \mathcal{K} \cap g^{-1}\mathcal{K}g$. For any non-zero ideal $\mathfrak{n} \subset A$ we denote by $T_{\mathfrak{n}}$ and $T_{\mathfrak{n}}$ the Hecke correspondences associated to diag $(\mathfrak{n}, 1, \ldots, 1)$ and diag $(1, \mathfrak{n}, \ldots, \mathfrak{n})$, respectively, viewed as elements in $\operatorname{GL}_r(\mathbb{A}_f)$. In the moduli interpretation of $M_A^r(1)_{\mathbb{C}_\infty}$, the correspondence $T_{\mathfrak{n}}$ encodes all isogenies of kernel isomorphic to A/\mathfrak{n} , and $T_{\mathfrak{n}}$ encodes their dual isogenies, with kernels isomorphic to $(A/\mathfrak{n})^{r-1}$.

We can now give an equivalent definition of special subvarieties. Let r'|r, and let K'/K be an imaginary extension (which means that only one place of K' lies above ∞) of degree [K':K] = r/r', and denote by A' the integral closure of A in K'. Then any rank r' Drinfeld A'-module is also a rank r Drinfeld A-module, which gives an embedding of moduli spaces $M_{A'}^{r'}(1)_{\mathbb{C}_{\infty}} \hookrightarrow M_{A}^{r}(1)_{\mathbb{C}_{\infty}}$. A closed subvariety $X \subset M_{A}^{r}(1)_{\mathbb{C}_{\infty}}$ is special if and only if X is an irreducible component of $T_{g}(M_{A'}^{r'}(1)_{\mathbb{C}_{\infty}})$ for some $g \in GL_{r}(\mathbb{A}_{f})$ and some A' and r' as above. A closed irreducible subvariety $X \subset M_{A}^{r}(\mathcal{K})_{\mathbb{C}_{\infty}}$ is special if its image under the canonical projection $M_{A}^{r}(\mathcal{K})_{\mathbb{C}_{\infty}} \to M_{A}^{r}(1)_{\mathbb{C}_{\infty}}$ is special.

Our first step is to show that suitable Hecke orbits are Zariski-dense:

Proposition 2.1. Let $\mathfrak{n} \subset A$ be a non-trivial principal ideal. Then, for any $x \in M_A^r(1)(\mathbb{C}_{\infty})$, the Hecke orbit $(T_\mathfrak{n} + T_{\tilde{\mathfrak{n}}})^\infty(x)$ is Zariski-dense in the irreducible component of $M_A^r(1)_{\mathbb{C}_{\infty}}$ containing x.

It follows that $M_A^r(1)(\mathbb{C}_{\infty})$, and hence any special subvariety, contains a Zariski-dense set of CM points. The idea of the proof is the following. Let $Z \subset \Omega^r$ denote an irreducible component of the preimage of the Zariski-closure of the Hecke orbit $(T_n + T_{\tilde{n}})^{\infty}(x)$. Then one explicitly constructs a smooth point $\omega \in Z$ which is approximated by sequences of points of Z lying on lines in sufficiently many directions (in Ω viewed as a subspace of $\mathbb{A}^{r-1}(\mathbb{C}_{\infty})$) to conclude that the tangent space of Z at ω must have dimension r - 1. The result follows.

A subvariety $X \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ is called *Hodge generic* if it is not contained in any proper special subvariety. The next step is to show that suitable Hecke images of irreducible Hodge generic subvarieties are again irreducible:

Proposition 2.2. Let $X \subset M_A^r(1)_{\mathbb{C}_{\infty}}$ be an irreducible Hodge generic subvariety, and dim $(X) \ge 1$. Then

- (i) There exists a non-zero ideal $\mathfrak{m}_X \subset A$, such that $T_\mathfrak{n}(X)$ is irreducible for any non-zero ideal $\mathfrak{n} \subset A$ prime to \mathfrak{m}_X .
- (ii) There exists an open subgroup $\mathcal{K} \subset \operatorname{GL}_r(\hat{A})$ and an irreducible component $X' \subset M^r_A(\mathcal{K})_{\mathbb{C}_{\infty}}$ of the preimage of X such that $T_n(X')$ is irreducible for all non-zero ideals $n \subset A$.

Proof sketch. We first replace X by its non-singular locus. We assume for simplicity that $X^{an} \subset GL_r(A) \setminus \Omega^r$. Let $\Xi \subset \Omega^r$ be an irreducible component of the preimage of X^{an} and $\Delta = \operatorname{Stab}_{GL_r(A)}(\Xi)$, so that $X^{an} \cong \Delta \setminus \Xi$. Denote by $\hat{\Delta}$ the closure of Δ in $GL_r(\hat{A})$, then one can show using [1, Theorem 1.1] that $\hat{\Delta}$ is open in $GL_r(\hat{A})$. It follows that there is a non-zero ideal $\mathfrak{m}_X \subset A$ such that $\Delta \to GL_r(A/\mathfrak{n})$ is surjective for all non-zero ideals $\mathfrak{n} \subset A$ prime to \mathfrak{m}_X .

To prove (i), let $\mathfrak{n} \subset A$ be a non-zero ideal prime to \mathfrak{m}_X . Let $\mathcal{K} = \operatorname{GL}_r(\hat{A})$, and define $\Gamma = \mathcal{K} \cap \operatorname{GL}_r(K)$ and $\mathcal{K}_0(\mathfrak{n}) = \mathcal{K} \cap \mathfrak{n}^{-1}\mathcal{K}\mathfrak{n}$. Denote by $\pi : M_A^r(\mathcal{K}_0(\mathfrak{n})) \to M_A^r(\mathcal{K})$ the canonical projection. Since Δ and Γ have the same image in $\operatorname{GL}_r(A/\mathfrak{n})$, it follows that Δ acts transitively on the fibres of π , hence $\pi^{-1}(X)$, and thus also $T_\mathfrak{n}(X) = \pi(\operatorname{diag}(\mathfrak{n}, 1, \ldots, 1)\pi^{-1}(X))$, is irreducible.

To prove (ii), we make similar definitions as above, but with $\mathcal{K} = \hat{\Delta}$. We choose $X' \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ such that $X'^{an} \cong \Delta \setminus \Xi$. Then we see that for each non-zero ideal $\mathfrak{n} \subset A$, Δ and Γ have the same image in $\operatorname{GL}_r(A/\mathfrak{n})$, and thus again $T_{\mathfrak{n}}(X')$ is irreducible. \Box

3. Arithmetic theory

Let $x \in M_A^r(\mathcal{K})(\mathbb{C}_{\infty})$ be a CM point represented by a CM Drinfeld module φ with endomorphism ring $\operatorname{End}(\varphi) = \mathcal{O}$. Then \mathcal{O} is an order in an imaginary extension K'/K of degree [K':K] = r. Denote by A' the integral closure of A in K'. By the theory of complex multiplication, the field K'(x) of definition of x over K' is the ring class field associated to the order \mathcal{O} , in particular $\operatorname{Gal}(K'(x)/K') \cong \operatorname{Pic}(\mathcal{O})$.

Now let $\mathfrak{p} \subset A$ be an unramified prime of residue degree 1 in K'/K, and which does not divide the conductor \mathfrak{c} of \mathcal{O} in A'. Then $\sigma_{\mathfrak{p}}(x) \in T_{\mathfrak{p}}(x)$, where $\sigma_{\mathfrak{p}} \in \operatorname{Gal}(K'(x)/K')$ is the Frobenius element associated to \mathfrak{p} .

Denote by g(K') the genus of K', then we define the CM height of x (and of φ) to be

$$H_{CM}(x) = H_{CM}(\varphi) := q^{g(K')} \cdot \#(A'/\mathfrak{c})^{1/r}.$$

One can show

Proposition 3.1.

- (i) There are only finitely many CM points in $M_A^r(\mathcal{K})(\mathbb{C}_\infty)$ with CM-height bounded by a given constant.
- (ii) For every $\varepsilon > 0$ there is a computable constant $C_{\varepsilon} > 0$ such that the following holds. Let φ be a Drinfeld module with complex multiplication by an order \mathcal{O} , as above. Then $\# \operatorname{Pic}(\mathcal{O}) > C_{\varepsilon} \operatorname{H}_{CM}(\varphi)^{1-\varepsilon}$.

Proof sketch of Theorem 1.3. Let $X \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ be an irreducible subcurve. We may ignore the level structure, and after replacing X by a Hecke translate and A by some A' if necessary, we may assume that $X \subset M_A^r(1)_{\mathbb{C}_{\infty}}$ is Hodge generic.

Let *F* be a field of definition of *X* containing the Hilbert class field of *K*, we may assume [F : K] is finite. Using explicit polynomial equations for the Hecke correspondence $T_{\mathfrak{p}}$ in the case $A = \mathbb{F}_q[T]$ (see [2]), one can show that the intersection degree of $X \cap T_{\mathfrak{p}}(X)$ is bounded by $c|\mathfrak{p}|^n$ for constants c, n > 0 depending only on *X*, where $|\mathfrak{p}| := \#(A/\mathfrak{p})$. Let $\mathfrak{m}_X \subset A$ denote the ideal given by Proposition 2.2(i).

Let $x \in X(\mathbb{C}_{\infty})$ be a CM point with endomorphism ring $\mathcal{O} \subset K'$. Then if $H_{CM}(x)$ is sufficiently large, it follows from the Čebotarev Theorem for function fields, and Proposition 3.1, that there exists a non-zero prime $\mathfrak{p} \subset A$ with the following properties:

(i) p divides neither \mathfrak{m}_X nor the conductor of \mathcal{O} , and has residue degree one in FK'/K.

(ii) $\#\operatorname{Pic}(\mathcal{O}) > c[F:K]|\mathfrak{p}|^n$.

Denote by F_s the separable closure of K in F, and by L the Galois closure of $F_sK'(x)$ over K'. Let $\sigma \in Aut(FL/FK')$ be an extension of the Frobenius element associated to a prime of L above \mathfrak{p} . Then σ fixes F (a field of definition of X and of $T_{\mathfrak{p}}(X)$) and $\sigma(x) \in T_{\mathfrak{p}}(x)$ by complex multiplication. Thus $X \cap T_{\mathfrak{p}}(X)$ contains the entire Gal(FK'(x)/FK')-orbit of x, which by (ii) above is larger than the intersection degree. It follows that $X \subset T_{\mathfrak{p}}(X)$. Since $T_{\mathfrak{p}}(X)$ is irreducible by Proposition 2.2, we get $X = T_{\mathfrak{p}}(X) = T_{\mathfrak{p}^m}(X)$, where we choose $m \in \mathbb{N}$ such that \mathfrak{p}^m is principal. Thus X contains the entire Hecke orbit $(T_{\mathfrak{p}^m} + T_{\mathfrak{p}^m})^{\infty}(x)$, which is Zariski-dense in a component of $M_A^r(1)_{\mathbb{C}_{\infty}}$, by Proposition 2.1. The result follows. \Box

Proof sketch of Theorem 1.4. By a sequence of simplifications one may reduce to the case where $X \subset M_A^r(1)_{\mathbb{C}_{\infty}}$ is Hodge generic, and contains a Zariski-dense set Σ of CM points x with endomorphism rings \mathcal{O}_x in which \mathfrak{p} has residue degree one and does not divide the conductor. Next, let $\mathcal{K} \subset \operatorname{GL}_r(\hat{A})$ and $X' \subset M_A^r(\mathcal{K})_{\mathbb{C}_{\infty}}$ be given by Proposition 2.2(ii). We lift Σ to a Zariski-dense set $\Sigma' \subset X'(\mathbb{C}_{\infty})$. As in the proof of Theorem 1.3, we now see that $\sigma(x) \in X' \cap T_{\mathfrak{p}}(X')$ for all $x \in \Sigma'$, where σ is again a Frobenius element associated to \mathfrak{p} . It follows that $X' \subset T_{\mathfrak{p}}(X')$, and since $T_{\mathfrak{p}}(X')$ is irreducible, it follows as above that X', and hence also X, is special. \Box

Remark. The main obstacle to proving Conjecture 1.2 for subvarieties of higher dimension is the lack of control over the ideal \mathfrak{m}_X and the level structure \mathcal{K} given by Proposition 2.2.

References

- F. Breuer, R. Pink, Monodromy groups associated to non-isotrivial Drinfeld modules in generic characteristic, in: G. van der Geer, B. Moonen, R. Schoof (Eds.), Number Fields and Function Fields: Two Parallel Worlds, in: Progress in Mathematics, vol. 239, Birkhäuser, Basel, 2005.
- [2] F. Breuer, H.-G. Rück, Drinfeld modular polynomials in higher rank, Preprint available at http://arxiv.org/abs/math.NT/0701291.
- [3] S.J. Edixhoven, A. Yafaev, Subvarieties of Shimura varieties, Ann. of Math. 157 (2) (2003) 621-645.
- [4] B. Moonen, Linearity properties of Shimura varieties II, Compos. Math. 114 (1998) 3-35.
- [5] R. Noot, Correspondances de Hecke, action de Galois et la conjecture de André–Oort [d'après Edixhoven et Yafaev], Seminaire Bourbaki, Exposée n° 942, Novembre 2004.