C. R. Acad. Sci. Paris, Ser. I 344 (2007) 749-752

Complex Analysis

Boundedness of Hankel operators on $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$

Aline Bonami ${ }^{\text {a }}$, Sandrine Grellier ${ }^{\text {a }}$, Benoît F. Sehba ${ }^{\text {b }}$
${ }^{\text {a }}$ Fédération Denis-Poisson, MAPMO-UMR 6628, département de mathématiques, université d'Orléans, 45067 Orléans cedex 2, France
${ }^{\mathrm{b}}$ Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

Received 9 February 2007; accepted after revision 15 May 2007
Available online 22 June 2007
Presented by Yves Meyer

Abstract

We prove that the Hankel operator h_{b} associated to the Szegö projection on the unit ball \mathbb{B}^{n} is bounded on the Hardy space $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ if and only if its symbol b has logarithmic mean oscillation on the unit sphere. To cite this article: A. Bonami et al., C. \boldsymbol{R}. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{Résumé}

Continuité de l'opérateur de Hankel sur $\mathcal{H}^{\mathbf{1}}\left(\mathbb{B}^{\boldsymbol{n}}\right)$. On démontre que l'opérateur de Hankel h_{b} associé au projecteur de Szegö sur la boule unité s'étend continûment à l'espace de Hardy $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ si et seulement si b est à oscillation moyenne logarithmique sur la sphère unité. Pour citer cet article : A. Bonami et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let b be a holomorphic function in $\mathcal{H}^{2}\left(\mathbb{B}^{n}\right)$. The little Hankel operator with symbol b is defined for f a bounded holomorphic function by

$$
h_{b}(f):=P(b \bar{f}) .
$$

Here P denotes the Szegö projection.
We prove that h_{b} extends to a bounded operator on $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ if and only if $b \in$ LMOA. This result generalizes the corresponding result in the unit disc, proved in [3] and [6]. The key of the proof of the necessary condition is a factorization of functions, which is obtained by a modification of the one of [2]. This weak factorization is developed and generalized in a forthcoming paper for all strictly pseudo-convex domains or convex domains of finite type in \mathbb{C}^{n} [1]. Our aim, here, is to give a self-contained simple proof for the unit ball, which relies on the notion of logarithmic Carleson measure for the sufficient condition.

[^0]Let us recall some basic facts and notations. We denote by $B_{\delta}(\xi)$ the anisotropic ball on the unit sphere \mathbb{S}^{n}, that is, the set

$$
B_{\delta}(\xi)=\left\{\zeta \in \mathbb{S}^{n} ;|1-\langle\xi, \zeta\rangle| \leqslant \delta\right\}
$$

and by $Q_{\delta}(\xi)$ the 'tent' over the ball $B_{\delta}(\xi)$, that is, the set

$$
Q_{\delta}(\xi)=\left\{z \in \mathbb{B}^{n} ;|1-\langle\xi, z\rangle| \leqslant \delta\right\} .
$$

We denote by $\mathrm{d} V$ the Lebesgue measure in \mathbb{B}^{n}, and by $\mathrm{d} \sigma$ the normalized Euclidean measure on \mathbb{S}^{n}. For $f \in \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$, we also note $f(\xi)$, for $\xi \in \mathbb{S}^{n}$, the admissible limit at the boundary, which exists a.e. Recall that LMOA is the space of functions $f \in \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ with logarithmic mean oscillation at the boundary. More precisely, for $f \in \mathrm{LMOA}$, there exists a constant $C>0$ so that, for any ball $B=B_{\delta}(\xi)$ with $\xi \in \mathbb{S}_{n}$ and $0<\delta<1$,

$$
\frac{1}{\sigma(B)} \int_{B}\left|f-f_{B}\right| \mathrm{d} \sigma \leqslant \frac{C}{\log (4 / \delta)} .
$$

Here f_{B} denotes the mean-value of f on B. It is well known that f belongs to LMOA if and only if $\mathrm{d} \mu(z)=$ $\left(1-|z|^{2}\right)|\nabla f(z)|^{2} \mathrm{~d} V(z)$ is a logarithmic Carleson measure (see [5]), that is, there exists some constant C such that, for all $\xi \in \mathbb{S}_{n}$ and $0<\delta<1$,

$$
\mu\left(Q_{\delta}(\xi)\right) \leqslant C \frac{\sigma\left(B_{\delta}(\xi)\right)}{(\log (4 / \delta))^{2}}
$$

Theorem 1.1. The Hankel operator h_{b} extends into a bounded operator on $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ if and only if $b \in$ LMOA.

2. The necessary condition

Let us first assume that h_{b} is bounded on $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ and prove that there exists a constant $C>0$ so that, for any ball B of radius δ on \mathbb{S}^{n},

$$
\frac{1}{\sigma(B)} \int_{B}\left|b-b_{B}\right| \mathrm{d} \sigma \leqslant \frac{C}{\log (4 / \delta)}\left\|h_{b}\right\|_{\mathcal{H}^{1}\left(\mathbb{B}^{n}\right) \rightarrow \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)}
$$

It is sufficient to show that, for any bounded function a supported in B with $\|a\|_{\infty} \leqslant \sigma(B)^{-1} \log (4 / \delta)$,

$$
\left|\int_{B}\left(b-b_{B}\right) \bar{a} \mathrm{~d} \sigma\right| \leqslant C\left\|h_{b}\right\|_{\mathcal{H}^{1}\left(\mathbb{B}^{n}\right) \rightarrow \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)} .
$$

Without loss of generality we may assume that a has mean-value zero and, since b is holomorphic, replace a by its projection $P a$ in the left-hand side. Finally, we want to prove that

$$
\left|\int_{\mathbb{S}^{n}} b \overline{P a} \mathrm{~d} \sigma\right| \leqslant C\left\|h_{b}\right\|_{\mathcal{H}^{1}\left(\mathbb{B}^{n}\right) \rightarrow \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)}
$$

If we can write $P a=u \times v$ with $u \in \operatorname{BMOA}$ and $v \in \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ such that $\|u\|_{\text {BMOA }} \leqslant C$ and $\|v\|_{\mathcal{H}^{1}} \leqslant C$, we conclude easily by writing

$$
\left|\int_{\mathbb{S}^{n}} b \overline{P a} \mathrm{~d} \sigma\right|=|\langle b, u v\rangle|=|\langle b \bar{v}, u\rangle|=\left|\left\langle h_{b}(v), u\right\rangle\right| \leqslant C^{2}\left\|h_{b}\right\|_{\mathcal{H}^{1}\left(\mathbb{B}^{n}\right) \rightarrow \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)},
$$

using the duality $\left(\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)\right.$, BMOA). So, let us find u and v. We assume that B is centered at $\xi_{0} \in \mathbb{S}^{n}$. We put $u(z):=\log \left(1-\left\langle z,(1-\delta) \xi_{0}\right\rangle\right)$. It is well known that this function belongs uniformly to BMOA or, equivalently, that $\left(1-|z|^{2}\right)|\nabla u(z)|^{2} \mathrm{~d} V(z)$ is uniformly a Carleson measure.

It remains to prove that $v:=(P a) / u$ belongs to $\mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$. We need to estimate $\int_{\mathbb{S}^{n}}|v(z)| \mathrm{d} \sigma(z)$, which we split into the integral on \widetilde{B}, where \widetilde{B} is the ball $B_{2 \delta}\left(\xi_{0}\right)$, and the integral on the complement. For $z \in \widetilde{B}$, we have $\mid 1-\langle z,(1-$
$\left.\delta) \xi_{0}\right\rangle \mid \simeq \delta$, and $|u(z)| \simeq \log (4 / \delta)$. It classically follows from Schwarz inequality and from the fact that P is bounded in L^{2} that

$$
\int_{\widetilde{B}}|v| \mathrm{d} \sigma(z) \leqslant \frac{C}{\log (4 / \delta)}(\sigma(B))^{1 / 2}\|P a\|_{L^{2}\left(\mathbb{S}^{n}\right)} \leqslant C
$$

This concludes for the first term. For the second one, we use the following estimates for z outside \widetilde{B} (see [4] for $P a$)

$$
|P a(z)| \leqslant C \delta^{1 / 2}\|a\|_{\infty} \sigma(B)\left|1-\left\langle z, \xi_{0}\right\rangle\right|^{-n-1 / 2}
$$

while $|u(z)| \simeq \log \left(4 /\left|1-\left\langle z, \xi_{0}\right\rangle\right|\right)$. To conclude for the boundedness of $\int_{c \widetilde{B}}|v(z)| \mathrm{d} \sigma(z)$, we use the fact that

$$
\delta^{1 / 2} \log (4 / \delta) \int_{c \widetilde{B}}\left|1-\left\langle z, \xi_{0}\right\rangle\right|^{-n-1 / 2}\left(\log \left(4 /\left|1-\left\langle z, \xi_{0}\right\rangle\right|\right)\right)^{-1} \mathrm{~d} \sigma(z) \leqslant C .
$$

This finishes the proof of the fact that b belongs to LMOA.

3. The sufficient condition

We first give an equivalent definition of logarithmic Carleson measures (see [7]):
Proposition 1. Let μ be a positive Borel measure on \mathbb{B}^{n}. Then the following conditions are equivalent.
(i) The measure μ is a logarithmic Carleson measure.
(ii) There is $C>0$ such that for any $g \in \operatorname{BMOA}$ and any $f \in \mathcal{H}^{2}\left(\mathbb{B}^{n}\right)$,

$$
\int_{\mathbb{B}^{n}}|g(z)|^{2}|f(z)|^{2} \mathrm{~d} \mu(z) \leqslant C\|g\|_{\mathrm{BMOA}}^{2}\|f\|_{\mathcal{H}^{2}}^{2} .
$$

We need also the following lemma, which follows easily from integration by parts (see also [4]). Here R denotes the radial derivative:

Lemma 2. Let φ, ψ be holomorphic polynomials on \mathbb{B}^{n}. Then the following equality holds

$$
\begin{aligned}
& \int_{\mathbb{S}^{n}} \varphi(\xi) \overline{\psi(\xi)} \mathrm{d} \sigma(\xi) \\
& \quad=c_{0} \int_{\mathbb{B}^{n}} \varphi(z) \overline{\psi(z)} \mathrm{d} V(z)+c_{1} \int_{\mathbb{B}^{n}} R \varphi(z) \overline{\psi(z)}\left(1-|z|^{2}\right) \mathrm{d} V(z)+c_{2} \int_{\mathbb{B}^{n}} R \varphi(z) \overline{R \psi(z)}\left(1-|z|^{2}\right) \mathrm{d} V(z) .
\end{aligned}
$$

Proof of the sufficiency of the condition. Let b in LMOA. For $f \in \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ and $g \in$ BMOA, we want to estimate $\left|\left\langle h_{b}(f), g\right\rangle\right|=|\langle b, f g\rangle|$. We use Lemma 2 for functions $\varphi=b$ and $\psi=f g$ (which we may assume smooth enough so that the identity is valid). So we have to estimate the three terms of the integral. For the first one, since b and g are in all Hardy spaces $\mathcal{H}^{p}\left(\mathbb{B}^{n}\right)$, the product $|b(z) g(z)|$ is bounded by $C\left(1-|z|^{2}\right)^{-1 / 2}$, and we conclude directly. For the two other terms, we have to consider

$$
\begin{aligned}
& I_{1}:=\int_{\mathbb{B}^{n}}|f(z)|(|g(z)|+|\nabla g(z)|)|\nabla b(z)|\left(1-|z|^{2}\right) \mathrm{d} V(z), \\
& I_{2}:=\int_{\mathbb{B}^{n}}|g(z)||\nabla f(z)||\nabla b(z)|\left(1-|z|^{2}\right) \mathrm{d} V(z) .
\end{aligned}
$$

For I_{1}, we use Schwarz inequality to obtain

$$
I_{1}^{2} \leqslant\left. C \int_{\mathbb{B}^{n}}|f(z)|\left(|g(z)|^{2}+|\nabla g(z)|^{2}\right)\left|\left(1-|z|^{2}\right) \mathrm{d} V(z) \times \int_{\mathbb{B}^{n}}\right| f(z)| | \nabla b(z)\right|^{2}\left(1-|z|^{2}\right) \mathrm{d} V(z) .
$$

We conclude by using the fact that $\left(1-|z|^{2}\right)|\nabla b(z)|^{2} \mathrm{~d} V(z),\left(1-|z|^{2}\right)|\nabla g(z)|^{2} \mathrm{~d} V(z)$ and $|g(z)|^{2}\left(1-|z|^{2}\right) \mathrm{d} V(z)$ are Carleson measures.

The main point is to estimate I_{2}. We first recall that, by the weak factorization theorem (see [4]), any $f \in \mathcal{H}^{1}\left(\mathbb{B}^{n}\right)$ can be written as

$$
f=\sum_{j} h_{j} l_{j} \quad \text { with } \sum_{j}\left\|h_{j}\right\|_{\mathcal{H}^{2}}\left\|l_{j}\right\|_{\mathcal{H}^{2}} \leqslant C\|f\|_{\mathcal{H}^{1}}
$$

Replacing f by this weak factorization, we are led to estimate a sum of terms like

$$
J:=\int_{\mathbb{B}^{n}}|g(z)||l(z)||\nabla h(z)||\nabla b(z)|\left(1-|z|^{2}\right) \mathrm{d} V(z)
$$

for l and h in $\mathcal{H}^{2}\left(\mathbb{B}^{n}\right)$. We recall that, for $h \in \mathcal{H}^{2}\left(\mathbb{B}^{n}\right)$,

$$
\int_{\mathbb{B}^{n}}|\nabla h(z)|^{2}\left(1-|z|^{2}\right) \mathrm{d} V(z) \leqslant C\|h\|_{\mathcal{H}^{2}}^{2}
$$

Using this last inequality, Schwarz inequality and Proposition 1, we obtain

$$
J \leqslant C\|h\|_{\mathcal{H}^{2}}\left(\int_{\mathbb{B}^{n}}|g(z)|^{2}|l(z)|^{2}|\nabla b(z)|^{2}\left(1-|z|^{2}\right) \mathrm{d} V(z)\right)^{1 / 2} \leqslant C\|g\|_{\mathrm{BMOA}}\|l\|_{\mathcal{H}^{2}}\|h\|_{\mathcal{H}^{2}}
$$

This allows us to conclude.

References

[1] A. Bonami, S. Grellier, Decomposition theorems for Hardy-Orlicz spaces and weak factorization, Preprint, 2007.
[2] A. Bonami, M. Peloso, F. Symesak, Factorization of Hardy spaces and Hankel operators on convex domains in \mathbb{C}^{n}, J. Geom. Anal. 11 (3) (2001) 363-397.
[3] S. Janson, J. Peetre, S. Semmes, On the action of Hankel and Toeplitz operators on some function spaces, Duke Math. J. 51 (4) (1984) 937-958.
[4] W. Rudin, Function Theory in the Unit Ball of C^{n}, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), vol. 241, Springer-Verlag, New York-Berlin, ISBN: 0-387-90514-6, 1980, xiii+436 pp.
[5] W.S. Smith, $\operatorname{BMO}(\rho)$ and Carleson measures, Trans. Amer. Math. Soc. 287 (1) (1985) 107-126.
[6] V.A. Tolokonnikov, Hankel and Toeplitz operators in Hardy spaces, Soviet Math. 37 (1987) 1359-1364.
[7] R. Zhao, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (2003) 605-618.

[^0]: E-mail addresses: Aline.Bonami@univ-orleans.fr (A. Bonami), Sandrine.Grellier@univ-orleans.fr (S. Grellier), bs@maths.gla.ac.uk (B.F. Sehba).

 1631-073X/\$ - see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2007.05.004

