

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 749-752

http://france.elsevier.com/direct/CRASS1/

Complex Analysis

Boundedness of Hankel operators on $\mathcal{H}^1(\mathbb{B}^n)$

Aline Bonami^a, Sandrine Grellier^a, Benoît F. Sehba^b

^a Fédération Denis-Poisson, MAPMO-UMR 6628, département de mathématiques, université d'Orléans, 45067 Orléans cedex 2, France ^b Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

Received 9 February 2007; accepted after revision 15 May 2007

Available online 22 June 2007

Presented by Yves Meyer

Abstract

We prove that the Hankel operator h_b associated to the Szegö projection on the unit ball \mathbb{B}^n is bounded on the Hardy space $\mathcal{H}^1(\mathbb{B}^n)$ if and only if its symbol *b* has logarithmic mean oscillation on the unit sphere. *To cite this article: A. Bonami et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Continuité de l'opérateur de Hankel sur $\mathcal{H}^1(\mathbb{B}^n)$. On démontre que l'opérateur de Hankel h_b associé au projecteur de Szegö sur la boule unité s'étend continûment à l'espace de Hardy $\mathcal{H}^1(\mathbb{B}^n)$ si et seulement si *b* est à oscillation moyenne logarithmique sur la sphère unité. *Pour citer cet article : A. Bonami et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let b be a holomorphic function in $\mathcal{H}^2(\mathbb{B}^n)$. The little Hankel operator with symbol b is defined for f a bounded holomorphic function by

 $h_b(f) := P(b\bar{f}).$

Here P denotes the Szegö projection.

We prove that h_b extends to a bounded operator on $\mathcal{H}^1(\mathbb{B}^n)$ if and only if $b \in LMOA$. This result generalizes the corresponding result in the unit disc, proved in [3] and [6]. The key of the proof of the necessary condition is a factorization of functions, which is obtained by a modification of the one of [2]. This weak factorization is developed and generalized in a forthcoming paper for all strictly pseudo-convex domains or convex domains of finite type in \mathbb{C}^n [1]. Our aim, here, is to give a self-contained simple proof for the unit ball, which relies on the notion of logarithmic Carleson measure for the sufficient condition.

E-mail addresses: Aline.Bonami@univ-orleans.fr (A. Bonami), Sandrine.Grellier@univ-orleans.fr (S. Grellier), bs@maths.gla.ac.uk (B.F. Sehba).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.05.004

Let us recall some basic facts and notations. We denote by $B_{\delta}(\xi)$ the anisotropic ball on the unit sphere \mathbb{S}^n , that is, the set

$$B_{\delta}(\xi) = \left\{ \zeta \in \mathbb{S}^n; \left| 1 - \langle \xi, \zeta \rangle \right| \leqslant \delta \right\}$$

and by $Q_{\delta}(\xi)$ the 'tent' over the ball $B_{\delta}(\xi)$, that is, the set

$$Q_{\delta}(\xi) = \left\{ z \in \mathbb{B}^n; \left| 1 - \langle \xi, z \rangle \right| \leq \delta \right\}.$$

We denote by dV the Lebesgue measure in \mathbb{B}^n , and by $d\sigma$ the normalized Euclidean measure on \mathbb{S}^n . For $f \in \mathcal{H}^1(\mathbb{B}^n)$, we also note $f(\xi)$, for $\xi \in \mathbb{S}^n$, the admissible limit at the boundary, which exists a.e. Recall that LMOA is the space of functions $f \in \mathcal{H}^1(\mathbb{B}^n)$ with logarithmic mean oscillation at the boundary. More precisely, for $f \in \text{LMOA}$, there exists a constant C > 0 so that, for any ball $B = B_{\delta}(\xi)$ with $\xi \in \mathbb{S}_n$ and $0 < \delta < 1$,

$$\frac{1}{\sigma(B)} \int_{B} |f - f_B| \, \mathrm{d}\sigma \leqslant \frac{C}{\log(4/\delta)}.$$

Here f_B denotes the mean-value of f on B. It is well known that f belongs to LMOA if and only if $d\mu(z) = (1 - |z|^2) |\nabla f(z)|^2 dV(z)$ is a logarithmic Carleson measure (see [5]), that is, there exists some constant C such that, for all $\xi \in \mathbb{S}_n$ and $0 < \delta < 1$,

$$\mu(Q_{\delta}(\xi)) \leqslant C \frac{\sigma(B_{\delta}(\xi))}{(\log(4/\delta))^2}.$$

Theorem 1.1. *The Hankel operator* h_b *extends into a bounded operator on* $\mathcal{H}^1(\mathbb{B}^n)$ *if and only if* $b \in LMOA$.

2. The necessary condition

Let us first assume that h_b is bounded on $\mathcal{H}^1(\mathbb{B}^n)$ and prove that there exists a constant C > 0 so that, for any ball B of radius δ on \mathbb{S}^n ,

$$\frac{1}{\sigma(B)} \int_{B} |b - b_B| \, \mathrm{d}\sigma \leqslant \frac{C}{\log(4/\delta)} \|h_b\|_{\mathcal{H}^1(\mathbb{B}^n) \to \mathcal{H}^1(\mathbb{B}^n)}$$

It is sufficient to show that, for any bounded function a supported in B with $||a||_{\infty} \leq \sigma(B)^{-1} \log(4/\delta)$,

$$\left|\int\limits_{B} (b-b_B)\bar{a}\,\mathrm{d}\sigma\right| \leqslant C \|h_b\|_{\mathcal{H}^1(\mathbb{B}^n)\to\mathcal{H}^1(\mathbb{B}^n)}.$$

Without loss of generality we may assume that a has mean-value zero and, since b is holomorphic, replace a by its projection Pa in the left-hand side. Finally, we want to prove that

$$\left|\int_{\mathbb{S}^n} b\overline{Pa} \,\mathrm{d}\sigma\right| \leqslant C \|h_b\|_{\mathcal{H}^1(\mathbb{B}^n) \to \mathcal{H}^1(\mathbb{B}^n)}.$$

If we can write $Pa = u \times v$ with $u \in BMOA$ and $v \in \mathcal{H}^1(\mathbb{B}^n)$ such that $||u||_{BMOA} \leq C$ and $||v||_{\mathcal{H}^1} \leq C$, we conclude easily by writing

$$\left| \int_{\mathbb{S}^n} b\overline{Pa} \, \mathrm{d}\sigma \right| = \left| \langle b, uv \rangle \right| = \left| \langle b\bar{v}, u \rangle \right| = \left| \langle h_b(v), u \rangle \right| \leqslant C^2 \|h_b\|_{\mathcal{H}^1(\mathbb{B}^n) \to \mathcal{H}^1(\mathbb{B}^n)},$$

using the duality $(\mathcal{H}^1(\mathbb{B}^n), \text{BMOA})$. So, let us find u and v. We assume that B is centered at $\xi_0 \in \mathbb{S}^n$. We put $u(z) := \log(1 - \langle z, (1 - \delta)\xi_0 \rangle)$. It is well known that this function belongs uniformly to BMOA or, equivalently, that $(1 - |z|^2)|\nabla u(z)|^2 dV(z)$ is uniformly a Carleson measure.

It remains to prove that v := (Pa)/u belongs to $\mathcal{H}^1(\mathbb{B}^n)$. We need to estimate $\int_{\mathbb{S}^n} |v(z)| d\sigma(z)$, which we split into the integral on \widetilde{B} , where \widetilde{B} is the ball $B_{2\delta}(\xi_0)$, and the integral on the complement. For $z \in \widetilde{B}$, we have $|1 - \langle z, (1 - z) \rangle$

 $|\delta\rangle |\xi_0\rangle| \simeq \delta$, and $|u(z)| \simeq \log(4/\delta)$. It classically follows from Schwarz inequality and from the fact that *P* is bounded in L^2 that

$$\int_{\widetilde{B}} |v| \, \mathrm{d}\sigma(z) \leqslant \frac{C}{\log(4/\delta)} \big(\sigma(B)\big)^{1/2} \|Pa\|_{L^2(\mathbb{S}^n)} \leqslant C.$$

This concludes for the first term. For the second one, we use the following estimates for z outside \widetilde{B} (see [4] for Pa)

 $|Pa(z)| \leq C\delta^{1/2} ||a||_{\infty} \sigma(B) |1-\langle z,\xi_0\rangle|^{-n-1/2},$

while $|u(z)| \simeq \log(4/|1 - \langle z, \xi_0 \rangle|)$. To conclude for the boundedness of $\int_{c_{\widetilde{B}}} |v(z)| d\sigma(z)$, we use the fact that

$$\delta^{1/2} \log(4/\delta) \int_{c\widetilde{R}} \left| 1 - \langle z, \xi_0 \rangle \right|^{-n-1/2} \left(\log(4/\left| 1 - \langle z, \xi_0 \rangle \right|) \right)^{-1} \mathrm{d}\sigma(z) \leqslant C.$$

This finishes the proof of the fact that *b* belongs to LMOA.

3. The sufficient condition

We first give an equivalent definition of logarithmic Carleson measures (see [7]):

Proposition 1. Let μ be a positive Borel measure on \mathbb{B}^n . Then the following conditions are equivalent.

- (i) The measure μ is a logarithmic Carleson measure.
- (ii) There is C > 0 such that for any $g \in BMOA$ and any $f \in \mathcal{H}^2(\mathbb{B}^n)$,

$$\int_{\mathbb{B}^n} \left| g(z) \right|^2 \left| f(z) \right|^2 \mathrm{d}\mu(z) \leqslant C \left\| g \right\|_{\mathrm{BMOA}}^2 \left\| f \right\|_{\mathcal{H}^2}^2.$$

We need also the following lemma, which follows easily from integration by parts (see also [4]). Here R denotes the radial derivative:

Lemma 2. Let φ , ψ be holomorphic polynomials on \mathbb{B}^n . Then the following equality holds

$$\int_{\mathbb{S}^n} \varphi(\xi) \overline{\psi(\xi)} \, \mathrm{d}\sigma(\xi)$$

= $c_0 \int_{\mathbb{B}^n} \varphi(z) \overline{\psi(z)} \, \mathrm{d}V(z) + c_1 \int_{\mathbb{B}^n} R\varphi(z) \overline{\psi(z)} (1 - |z|^2) \, \mathrm{d}V(z) + c_2 \int_{\mathbb{B}^n} R\varphi(z) \overline{R\psi(z)} (1 - |z|^2) \, \mathrm{d}V(z).$

Proof of the sufficiency of the condition. Let *b* in LMOA. For $f \in \mathcal{H}^1(\mathbb{B}^n)$ and $g \in BMOA$, we want to estimate $|\langle h_b(f), g \rangle| = |\langle b, fg \rangle|$. We use Lemma 2 for functions $\varphi = b$ and $\psi = fg$ (which we may assume smooth enough so that the identity is valid). So we have to estimate the three terms of the integral. For the first one, since *b* and *g* are in all Hardy spaces $\mathcal{H}^p(\mathbb{B}^n)$, the product |b(z)g(z)| is bounded by $C(1-|z|^2)^{-1/2}$, and we conclude directly. For the two other terms, we have to consider

$$I_{1} := \int_{\mathbb{R}^{n}} \left| f(z) \right| \left(\left| g(z) \right| + \left| \nabla g(z) \right| \right) \left| \nabla b(z) \right| \left(1 - |z|^{2} \right) \mathrm{d}V(z)$$

$$I_{2} := \int_{\mathbb{R}^{n}} \left| g(z) \right| \left| \nabla f(z) \right| \left| \nabla b(z) \right| \left(1 - |z|^{2} \right) \mathrm{d}V(z).$$

For I_1 , we use Schwarz inequality to obtain

$$I_{1}^{2} \leq C \int_{\mathbb{B}^{n}} |f(z)| (|g(z)|^{2} + |\nabla g(z)|^{2}) |(1 - |z|^{2}) dV(z) \times \int_{\mathbb{B}^{n}} |f(z)| |\nabla b(z)|^{2} (1 - |z|^{2}) dV(z).$$

We conclude by using the fact that $(1 - |z|^2) |\nabla b(z)|^2 dV(z)$, $(1 - |z|^2) |\nabla g(z)|^2 dV(z)$ and $|g(z)|^2 (1 - |z|^2) dV(z)$ are Carleson measures.

The main point is to estimate I_2 . We first recall that, by the weak factorization theorem (see [4]), any $f \in \mathcal{H}^1(\mathbb{B}^n)$ can be written as

$$f = \sum_{j} h_{j} l_{j} \quad \text{with } \sum_{j} \|h_{j}\|_{\mathcal{H}^{2}} \|l_{j}\|_{\mathcal{H}^{2}} \leqslant C \|f\|_{\mathcal{H}^{1}}.$$

Replacing f by this weak factorization, we are led to estimate a sum of terms like

$$J := \int_{\mathbb{B}^n} \left| g(z) \right| \left| l(z) \right| \left| \nabla h(z) \right| \left| \nabla b(z) \right| \left(1 - |z|^2 \right) \mathrm{d}V(z)$$

for *l* and *h* in $\mathcal{H}^2(\mathbb{B}^n)$. We recall that, for $h \in \mathcal{H}^2(\mathbb{B}^n)$,

$$\int_{\mathbb{B}^n} \left| \nabla h(z) \right|^2 \left(1 - |z|^2 \right) \mathrm{d} V(z) \leqslant C \|h\|_{\mathcal{H}^2}^2.$$

Using this last inequality, Schwarz inequality and Proposition 1, we obtain

$$J \leq C \|h\|_{\mathcal{H}^{2}} \left(\int_{\mathbb{B}^{n}} |g(z)|^{2} |l(z)|^{2} |\nabla b(z)|^{2} (1 - |z|^{2}) \, \mathrm{d}V(z) \right)^{1/2} \leq C \|g\|_{\mathrm{BMOA}} \|l\|_{\mathcal{H}^{2}} \|h\|_{\mathcal{H}^{2}}.$$

This allows us to conclude. \Box

References

- [1] A. Bonami, S. Grellier, Decomposition theorems for Hardy–Orlicz spaces and weak factorization, Preprint, 2007.
- [2] A. Bonami, M. Peloso, F. Symesak, Factorization of Hardy spaces and Hankel operators on convex domains in Cⁿ, J. Geom. Anal. 11 (3) (2001) 363–397.
- [3] S. Janson, J. Peetre, S. Semmes, On the action of Hankel and Toeplitz operators on some function spaces, Duke Math. J. 51 (4) (1984) 937–958.
- [4] W. Rudin, Function Theory in the Unit Ball of Cⁿ, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), vol. 241, Springer-Verlag, New York–Berlin, ISBN: 0-387-90514-6, 1980, xiii+436 pp.
- [5] W.S. Smith, BMO(ρ) and Carleson measures, Trans. Amer. Math. Soc. 287 (1) (1985) 107–126.
- [6] V.A. Tolokonnikov, Hankel and Toeplitz operators in Hardy spaces, Soviet Math. 37 (1987) 1359–1364.
- [7] R. Zhao, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (2003) 605-618.