

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 737-742

http://france.elsevier.com/direct/CRASS1/

Group Theory

Invariant measures and stiffness for non-Abelian groups of toral automorphisms [☆]

Jean Bourgain ^a, Alex Furman ^b, Elon Lindenstrauss ^c, Shahar Mozes ^d

- a Institute for Advanced Study, Princeton, NJ 08540, USA
- ^b University of Illinois at Chicago, Chicago, IL 60607, USA
 - ^c Princeton University, Princeton, NJ 08544, USA
 - ^d The Hebrew University, 91904 Jerusalem, Israel

Received 11 April 2007; accepted 24 April 2007

Available online 18 June 2007

Presented by Jean Bourgain

Abstract

Let Γ be a non-elementary subgroup of $\mathrm{SL}_2(\mathbb{Z})$. If μ is a probability measure on \mathbb{T}^2 which is Γ -invariant, then μ is a convex combination of the Haar measure and an atomic probability measure supported by rational points. The same conclusion holds under the weaker assumption that μ is ν -stationary, i.e. $\mu = \nu * \mu$, where ν is a finitely supported, probability measure on Γ whose support supp ν generates Γ . The approach works more generally for $\Gamma < \mathrm{SL}_d(\mathbb{Z})$. To cite this article: J. Bourgain et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Mesures invariantes et rigidité pour groupes non-abeliens d'automorphismes du tore. Soit Γ un sous-groupe non-élementaire du groupe $\mathrm{SL}_2(\mathbb{Z})$. Soit μ une mesure de probabilité Γ -invariante sur le tore \mathbb{T}^2 . On démontre que μ est une moyenne de la mesure de Haar et une probabilité discrète portée par des points rationnels. La même conclusion reste vraie sous l'hypothèse que μ est ν -stationnaire, donc $\mu = \nu * \mu$, où ν est une probabilité sur Γ à support fini et engendrant Γ . L'approche se généralise aux sous-groupes Γ de $\mathrm{SL}_d(\mathbb{Z})$. Pour citer cet article : J. Bourgain et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous considérons l'action de $\operatorname{SL}_2(\mathbb{Z})$ sur le tore \mathbb{T}^2 . Soit Γ un sous-groupe non-élémentaire du $\operatorname{SL}_2(\mathbb{Z})$. Soit μ une mesure sur \mathbb{T}^2 que nous supposons Γ -invariante, ou, moins restrictivement, que μ est ν -stationnaire pour une probabilité ν sur Γ à support fini et tel que $\langle \operatorname{supp} \nu \rangle = \Gamma$. Nous démontrons que si μ n'est pas un multiple de la mesure de Haar sur \mathbb{T}^2 , alors μ a une composante discrète. La méthode comporte plusieurs étapes et des techniques d'analyse harmonique y jouent un rôle essentiel. Supposons la transformée de Fourier $\hat{\mu}(b) \neq 0$ pour un élément $b \in \mathbb{Z}^2 \setminus \{0\}$. Le point de départ consiste à étudier l'ensemble $\Lambda_c = \{n \in \mathbb{Z}^2; |\hat{\mu}(n)| > c\}$ (c > 0 approprié) et de

[†] This research is supported in part by NSF DMS grants 0627882 (JB), 0604611 (AF), 0500205 & 0554345 (EL) and BSF grant 2004-010 (SM).

montrer que Λ_c est «riche», en un certain sens d'entropie métrique. On utilise ici divers arguments d'amplification et un résultat d'équirépartition pour convolutions multiplicatives sur \mathbb{R} , qui repose sur le théorème «somme-produit» obtenu dans [3] et [4]. Ensuite on déduit de la structure de Λ_c des propriétés de «porosité» pour le support de μ et finalement une composante discrète.

1. Introduction: main theorems

In this Note we present some new dichotomies for invariant and stationary measures μ on \mathbb{T}^2 under the action of $SL_2(\mathbb{Z})$ -subgroups.

Theorem A. If μ is invariant under the action of a non-elementary subgroup Γ of $SL_2(\mathbb{Z})$, then μ is a linear combination of Haar measure on \mathbb{T}^2 and an atomic measure supported by rational points.

Theorem B. The same conclusion holds if we assume μ is ν -stationary, i.e. $\mu = \nu * \mu = \sum_{g \in \Gamma} \nu(g) \, g_* \mu$, with ν a finitely supported probability measure on $SL_2(\mathbb{Z})$ such that $\Gamma = \langle \text{supp } \nu \rangle$ is a non-elementary subgroup.

Theorem C. If for a point $\theta \in \mathbb{T}^2$ the measure $\eta_n = v^{(n)} * \delta_\theta$ has Fourier coefficient $|\hat{\eta}_n(b)| > \delta$ for some $b \in \mathbb{Z}^2 \setminus \{0\}$, then θ admits a rational approximation

$$\left\|\theta - \frac{a}{q}\right\| < e^{-cn} \quad \text{for some } q \in \mathbb{Z}_+, |q| < \left(\frac{\|b\|}{\delta}\right)^C \tag{1}$$

with c, C > 0 depending on v.

Theorem C answers the question of equidistribution, posed by Y. Guivarc'h [9].

Theorem D. Unless $\theta \in \mathbb{T}^2$ is rational, $v^{(n)} * \delta_{\theta}$ tend weak* to Lebesgue measure as $n \to \infty$.

Comments. (1) The results extend to $SL_d(\mathbb{Z})$, assuming that $supp(\nu)$ generates a Zariski dense subgroup in $SL_d(\mathbb{R})$ or, more generally, assuming that the smallest algebraic subgroup $H_{\nu} \subset SL_d(\mathbb{R})$ supporting ν , is strongly irreducible (leaves invariant no finite union of \mathbb{R}^d -hyperplanes) and contains a proximal element. Under these conditions the top exponent is simple (see [8]).

(2) ν -stationary measures play an important role in the theory of boundaries of groups, and were systematically used by H. Furstenberg and others in many works. In his paper [7] H. Furstenberg explores the relationship between ν -stationary measures and Γ -invariant measures, where ν is a probability measure on Γ whose support generates Γ . For a general action of Γ on a space X there is a big difference between the two concepts: indeed, if X is compact ν -stationary measures always exist but there may well be no Γ -invariant probability measure whatsoever. In [7] Furstenberg introduces the notion of stiff actions: an action of a group Γ on a space X is said to be ν -stiff if every ν -stationary measure is in fact Γ -invariant, and proves stiffness for the action of $\Gamma = \mathrm{SL}(d, \mathbb{Z})$ on \mathbb{T}^d where ν is a (very) carefully chosen probability measure on $\mathrm{SL}(d, \mathbb{Z})$.

Furstenberg conjectured that this action is stiff for any ν whose support generates $SL(d, \mathbb{Z})$. Theorem B and its extension to d > 2 establish in particular this conjecture. Moreover, in conjunction with strong approximation results such as those in [20,17], our results imply that the action is 'superstiff', in the sense that if $\langle \text{supp } \nu \rangle$ is Zariski dense in $SL(d, \mathbb{R})$, any ν -stationary measure on \mathbb{T}^d is invariant under a finite index subgroup of $SL(d, \mathbb{Z})$ (depending only on supp ν).

- (3) Theorem A may be viewed as a non-Abelian analogue of the well-known $\times 2, \times 3$ invariant measure problem on the circle \mathbb{T} . Thus the conjecture states that if $\mu \in M(\mathbb{T})$ satisfies $\hat{\mu}(n) = \hat{\mu}(2n) = \hat{\mu}(3n)$ for all $n \in \mathbb{Z}$, then μ is a combination of Haar and discrete measures. It is known that if we assume moreover that μ has positive entropy, then μ is Haar (see [18] and [11,12,5] for the generalization to \mathbb{Z}^d -actions on tori). However, in the context of $\times 2, \times 3$ problem, or its toral analogues, statements such as Theorem D do not hold.
- (4) We also recall that there are (Abelian and non-Abelian) counterparts for orbit closures. In the Abelian case, these are the dichotomy results of H. Furstenberg [6] and D. Berend [1]. The non-Abelian problem for Γ -orbits, $\Gamma \subset SL_d(\mathbb{Z})$ a semigroup action on \mathbb{T}^d , appears for example in G.A. Margulis list of open problems [14]. Contributions

here include the work of G.A. Starkov [19] (for Γ a strongly irreducible subgroup of $SL_d(\mathbb{Z})$), R. Muchnik [15,16] (Γ a Zariski dense semigroup) and Guivarc'h-Starkov [10].

2. Idea of the proofs

Next, we give a brief overview of the proof of Theorem B. The proof of Theorem C (which implies D, B and A) uses the same ingredients – see comments at the end. There are several distinct steps in the proofs which we summarize.

Assume μ is a ν -stationary probability measure on \mathbb{T}^2 different from the Haar measure. Thus

$$\hat{\mu}(b) \neq 0$$
 for some $b \in \mathbb{Z}^2 \setminus \{0\}$

and hence

$$\sum_{g} \left| \hat{\mu} \left(g^{t}(b) \right) \right| \cdot \nu^{(r)}(g) \geqslant \left| \hat{\mu}(b) \right| = c \tag{2}$$

for any convolution power $v^{(r)}$ of v. It is clear from (2) that μ has many large Fourier coefficients; in fact there is

$$\left| \left\{ n \in \mathbb{Z}^2 \colon \|n\| \leqslant N \text{ and } \left| \hat{\mu}(n) \right| > \frac{1}{2}c \right\} \right| > N^{\delta}$$

for all sufficiently large N. However, unless δ is sufficiently close to 2, we need a more structured set of large Fourier coefficients. This is achieved in

Step 1 (amplification).

Lemma 1. There are positive constants $\beta > 0$ and $\kappa > 0$ such that for all sufficiently large $N \in \mathbb{Z}_+$, there is a set $\mathcal{F} \subset \mathbb{Z}^2 \cap B(0, N)$ with the following properties

- (a) $|\hat{\mu}(k)| > \beta$ for $k \in \mathcal{F}$. (b) $|k k'| > N^{1-\kappa}$ if $k \neq k'$ in \mathcal{F} .
- (c) $|\mathcal{F}| > \beta N^{2\kappa}$.

Our proof of Lemma 1 is rather involved. It is obtained by combining the following two ingredients.

Denote $\delta(\bar{x}, \bar{y})$ the angular distance on the projective space $P(\mathbb{R}^2)$. The following statement is obtained by combining Proposition 4.1 (p. 161) and Theorem 2.5 (p. 106) from [2]:

Proposition 2 (small ball estimate). There is a uniform estimate for $\bar{x}, \bar{y} \in P(\mathbb{R}^2)$

$$\sum_{\delta(g\bar{x},\bar{y})<\varepsilon} v^{(n)}(g) < C(\varepsilon^{\alpha} + \mathrm{e}^{-cn})$$

for some α , c, C > 0.

We also use the large deviation estimate for the Lyapunov exponent γ (Theorem 6.2, p. 131 in [2]), which gives:

Proposition 3. *Uniformly in x*, ||x|| = 1:

$$v^{(n)} \left\{ g: \left| \frac{1}{n} \log \|gx\| - \gamma \right| > \frac{\gamma}{10} \right\} < Ce^{-cn}.$$

The combinatorial information that can be extracted from Proposition 2 on the set of large Fourier coefficients is amplified using the following general statement on mixed multiplicative and additive convolution on \mathbb{R} (which may be of independent interest).

Proposition 4. Given $\theta > 0$, C > 1, there are $s \in \mathbb{Z}_+$ and C' > 1 such that the following holds. Let $\delta > 0$ and η a probability measure on $[\frac{1}{2}, 1]$ satisfying

$$\max_{a} \eta \big(B(a, \rho) \big) < C \rho^{\theta} \quad for \, \delta < \rho < 1.$$

Consider the image measure v of $\eta \otimes \cdots \otimes \eta$ (s^2 -fold) under the map

$$(x_1, \ldots, x_{s^2}) \mapsto (x_1 \ldots x_s) + (x_{s+1} \ldots x_{2_s}) + \cdots + (x_{s^2-s+1} \ldots x_{s^2}).$$

Then

$$\max_{a} v(B(a, \rho)) < C'\rho \quad \text{for } \delta < \rho < 1$$

where here $B(a, \rho) = [a - \rho, a + \rho]$.

Proposition 4 is deduced from a set-theoretical statement, which is the 'discretized ring conjecture' (in the sense of [13]); see [3,4].

Returning to Lemma 1, there is the following implication on the support of μ .

Step 2 (porosity property).

Using elementary harmonic analysis, one shows the following general result:

Lemma 5. Let μ be a probability measure on \mathbb{T}^d , $d \ge 1$. Fix $\kappa_1, \kappa_2 > 0$.

Let $N \gg M$ be large integers and assume

$$\mathcal{N}([|\hat{\mu}| > \kappa_1] \cap B(0, N); M) > \kappa_2 \left(\frac{N}{M}\right)^d$$

where for $A \subset \mathbb{Z}^d$ and R > 1, $\mathcal{N}(A; R)$ denotes the smallest number of balls of radius R needed to cover A. Then there are points $x_1, \ldots, x_{\beta} \in \mathbb{T}^d$ such that

$$\begin{split} &\|x_{\alpha}-x_{\alpha'}\|>\frac{1}{M} \quad for \ \alpha\neq\alpha', \\ &\sum_{\alpha}\mu\left(B\left(x_{\alpha},\frac{1}{N}\right)\right)>\rho(\kappa_{1},\kappa_{2})>0. \end{split}$$

Combined with Lemma 1 (d = 2 and taking $\kappa_1 = \beta = \kappa_2$, $M = N^{1-\kappa}$), we obtain therefore

Lemma 6. For all N large enough, there are points $x_1, \ldots, x_\beta \in \mathbb{T}^2$ such that $||x_\alpha - x_{\alpha'}|| > \frac{1}{N^{1-\kappa}}$ for $\alpha \neq \alpha'$ and

$$\sum_{\alpha} \mu \left(B\left(x_{\alpha}, \frac{1}{N}\right) \right) > \rho.$$

Our next aim is to improve the porosity property obtained in Lemma 6 by decreasing the radius of the balls. **Step 3** (bootstrap).

Starting from the statement in Lemma 6 and using the group action, we prove

Lemma 7. For any fixed number C_0 , there is a collection of points $\{z_{\alpha}\}\in\mathbb{T}^2$ such that

$$\|z_{\alpha}-z_{\alpha'}\|>\frac{1}{2N^{1-\kappa}}>\frac{1}{N}\quad for\ \alpha\neq\alpha'$$

and

$$\sum_{\alpha} \mu\left(B\left(z_{\alpha},\frac{1}{N^{C_0}}\right)\right) > \rho(C_0) > 0.$$

The statement follows from a simple iterative construction. Under the action of $SL_2(\mathbb{Z})$ -elements, the balls become elongated ellipses and intersecting different families leads to sets of smaller diameter.

Step 4 (rational approximation).

Assume

$$\mu(B(x,\varepsilon)) > \varepsilon^{\tau} \tag{3}$$

where $\varepsilon > 0$ is small and $\tau > 0$ a fixed exponent.

Take $n \sim (\frac{1}{c})^{1/2}$ and make a Diophantine approximation

$$\left| x_1 - \frac{a_1}{q} \right| < \frac{1}{q\sqrt{n}}, \qquad \left| x_2 - \frac{a_2}{q} \right| < \frac{1}{q\sqrt{n}} \tag{4}$$

where $1 \le q \le n$ and $gcd(a_1, a_2, q) = 1$. It follows from (3), (4) that

$$\mu\!\left(B\!\left(\frac{a}{q},\frac{2}{q\sqrt{n}}\right)\right) > \varepsilon^{\tau}$$

and the ν -stationarity of μ implies for any $r \in \mathbb{Z}_+$

$$\sum_{q} \mu\left(B\left(\frac{g(a)}{q}, \frac{2\|g\|}{q\sqrt{n}}\right)\right) \cdot v^{(r)}(g) > \varepsilon^{\tau}.$$
(5)

Take $r \sim \log n$ as to ensure that $||g|| < n^{1/3}$ if $g \in \text{supp } v^{(r)}$. It follows then from (5) and our choice of r that

$$\varepsilon^{\tau} \leqslant \sum_{b \in \mathbb{Z}_{a}^{2}} \mu \left(B\left(\frac{b}{q}, \frac{1}{2q}\right) \right) \cdot \nu^{(r)} \left(\left\{ g \mid ga \equiv b(\bmod q) \right\} \right).$$

A spectral gap of the form $\|\nu^{(r)}\| \leqslant q^{-\omega_1}$, $r \geqslant \log q$, on $\ell^2(\mathbb{Z}_q^2) \ominus \mathbb{C}$ with some fixed $\omega_1 > 0$ depending only on ν , yields the estimate

$$\max_{b \in \mathbb{Z}_a^2} \nu^{(r)} \left(\left\{ g \mid ga \equiv b \pmod{q} \right\} \right) < q^{-\omega}, \quad q < \left(\frac{1}{\varepsilon} \right)^{\tau/\omega}. \tag{6}$$

Recalling the conclusion of Lemma 7, the exponent τ in (3) may be taken to be an arbitrary small fixed positive number. In particular, we may ensure that in (6), $q < Q(\varepsilon) < (\frac{1}{\varepsilon})^{1/20}$. Thus we proved that there is $\rho_1 > 0$ such that for all $\varepsilon > 0$ small enough

$$\mu(\mathfrak{S}_{O(\varepsilon),\varepsilon^{1/4}}) > \rho_1 \tag{7}$$

where we denote

$$\mathfrak{S}_{Q,\varepsilon} = \bigcup_{q < Q} \bigcup_{(a,q)=1} B\left(\frac{a}{q},\varepsilon\right). \tag{8}$$

Step 5 (conclusion).

Starting from (7) with $\varepsilon = \varepsilon_0$ small enough (depending on ρ_1), we perform again an iterative bootstrap (as in Step 3), invoking the following.

Lemma 8. Let $\mathfrak{S}_{Q,\varepsilon}$ be as above and let $n = n(\varepsilon) \in \mathbb{Z}_+$ satisfying

$$n < c \log \frac{1}{\varepsilon}$$
 (c depending on v).

Assume

$$\left(\boldsymbol{v}^{(n)} * \boldsymbol{\mu}\right) (\mathfrak{S}_{Q,\varepsilon}) = \sum \boldsymbol{v}^{(n)}(g) \boldsymbol{\mu} \left(g^{-1}(\mathfrak{S}_{Q,\varepsilon})\right) > \kappa.$$

Then we have $\mu(\mathfrak{S}_{Q,\varepsilon'}) > \kappa - e^{-c_2 n}$ where $\varepsilon' = e^{-\frac{1}{4}\gamma n} \varepsilon$.

The proof of Lemma 8 uses again Propositions 2 and 3.

Thus with $Q = Q(\varepsilon_0)$ fixed, ε is gradually decreased and in the limit we obtain

$$\mu\left(\left\{\frac{a}{q}; 1 \leqslant q < Q(\varepsilon_0), \ 0 \leqslant a_1, a_2 < q\right\}\right) > \frac{1}{2}\rho_1 > 0.$$

This establishes Theorem B.

We conclude with some comments on the proof of Theorem C. For $m \ge 1$ we denote by

$$\eta_m = \nu^{(m)} * \delta_\theta \tag{9}$$

the measure on \mathbb{T}^2 (δ_x stands here for the Dirac measure). In these notations, the assumption of Theorem C becomes

$$\left|\hat{\eta}_n(b)\right| > \delta \quad \text{where } b \in \mathbb{Z}^2 \setminus \{0\}.$$
 (10)

The proof of steps 1–4 is quantitative, and even though μ_m is not ν -stationary, these arguments can still be applied if one is willing to sacrifice a few powers of ν .

For example, in step 1 we may conclude from (10) that for any k < n there is some N with $c_3k < \log N < c_4k$ and a set $\mathcal{F} \subset \mathbb{Z}^2 \cap B(0,N)$ satisfying (a)–(c) of Lemma 1 for $\mu = \mu_{n-k}$ and $\beta = (\delta/\|b\|)^C$ (where C and c_3, c_4 , as well as all the other constants appearing below depend only on ν). Similarly modifying steps 2–4 we conclude that for any k' in the range $C' \log(\|b\|/\delta) < k' < n$ there are $Q, \epsilon = Q^{-20}$ with $c_3'k' < \log Q < c_4'k'$ satisfying (cf. (7)) $\eta_{n-k'}(\mathfrak{S}_{Q,\varepsilon}) > (\delta/\|b\|)^C$.

Let n' = n - k' for $c_5 \log(\|b\|/\delta) < k' < n/2$, with c_5 a large constant. Since $\eta_{n'} = \nu^{(n')} * \delta_{\theta}$, if c_5 is sufficiently large, iteration of Lemma 8 imply that $\delta_{\theta}(\mathfrak{S}_{Q,\varepsilon'}) > (\delta/\|b\|)^C - \max(Q^{-c_3}, e^{-c_2n'}) > 0$ where $\varepsilon' < e^{-\frac{1}{4}\gamma n'} \varepsilon < e^{-\frac{1}{8}\gamma n}$, i.e. $\theta \in \mathfrak{S}_{Q,\varepsilon'}$. Since $Q < (\|b\|/\delta)^{C_0}$ for some C_0 , Eq. (1) of Theorem C follows.

References

- [1] D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280 (2) (2000) 509-532.
- [2] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985.
- [3] J. Bourgain, On the Erdös-Volkmann and Katz-Tao ring conjecture, GAFA 13 (2003) 334–365.
- [4] J. Bourgain, A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2), preprint, Invent., submitted for publication.
- [5] M. Einsiedler, E. Lindenstrauss, Rigidity properties of Z^{d} -actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc. 9 (2003) 99–110.
- [6] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967) 1–49.
- [7] H. Furstenberg, Stiffness of group actions, in: Lie Groups and Ergodic Theory, Mumbai, 1996, in: Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105–117.
- [8] I.Ya. Gol'dsheĭd, G.A. Margulis, Lyapunov exponents of a product of random matrices, Uspekhi Mat. Nauk 44 (5(269)) (1989) 13–60 (in Russian). Translation in Russian Math. Surveys 44 (5) (1989) 11–71.
- [9] Y. Guivarc'h, private communication.
- [10] Y. Guivarc'h, A.N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms, Ergodic Theory Dynam. Systems 24 (3) (2004) 767–802.
- [11] B. Kalinin, A. Katok, Invariant measures for actions of higher rank abelian groups, in: Smooth Ergodic Theory and its Applications, Seattle, WA, 1999, in: Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc. Providence, RI, 2001, pp. 593–637.
- [12] A. Katok, R. Spatzier, Invariant measures for higher rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (4) (1996) 751–778.
- [13] N. Katz, T. Tao, Some connections between Falconer's distance set conjecture and sets of Furstenberg type, New York J. Math. 7 (2001) 149–187
- [14] G.A. Margulis, Problems and conjectures in rigidity theory, in: Mathematics: Frontiers and Perspectives, Amer. Math. Soc., 2000, pp. 161–174.
- [15] R. Muchnik, Orbits of Zariski dense semigroups of $SL(n, \mathbb{Z})$, Ergodic Theory Dynam. Systems.
- [16] R. Muchnik, Semigroup actions on T^n , Geom. Dedicata 110 (2005) 1–47.
- [17] R. Pink, Strong approximation for Zariski dense subgroups over arbitrary global fields, Comment. Math. Helv. 75 (4) (2000) 608–643.
- [18] D. Rudolph, ×2 and ×3 invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (2) (1990) 395–406.
- [19] A.N. Starkov, Orbit closures of toral automorphism groups, preprint, Moscow, 1999.
- [20] B. Weisfeiler, Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. (2) 120 (2) (1984) 271–315.