Invariant measures and stiffness for non-Abelian groups of toral automorphisms **

Jean Bourgain ${ }^{\text {a }}$, Alex Furman ${ }^{\text {b }}$, Elon Lindenstrauss ${ }^{\text {c }}$, Shahar Mozes ${ }^{\text {d }}$
${ }^{\text {a }}$ Institute for Advanced Study, Princeton, NJ 08540, USA
${ }^{\mathrm{b}}$ University of Illinois at Chicago, Chicago, IL 60607, USA
${ }^{\text {c }}$ Princeton University, Princeton, NJ 08544, USA
${ }^{\text {d }}$ The Hebrew University, 91904 Jerusalem, Israel

Received 11 April 2007; accepted 24 April 2007
Available online 18 June 2007
Presented by Jean Bourgain

Abstract

Let Γ be a non-elementary subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$. If μ is a probability measure on \mathbb{T}^{2} which is Γ-invariant, then μ is a convex combination of the Haar measure and an atomic probability measure supported by rational points. The same conclusion holds under the weaker assumption that μ is v-stationary, i.e. $\mu=v * \mu$, where v is a finitely supported, probability measure on Γ whose support supp v generates Γ. The approach works more generally for $\Gamma<\mathrm{SL}_{d}(\mathbb{Z})$. To cite this article: J. Bourgain et al., \boldsymbol{C}. \boldsymbol{R}. Acad. Sci. Paris, Ser. 1344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Mesures invariantes et rigidité pour groupes non-abeliens d'automorphismes du tore. Soit Γ un sous-groupe nonélementaire du groupe $\mathrm{SL}_{2}(\mathbb{Z})$. Soit μ une mesure de probabilité Γ-invariante sur le tore \mathbb{T}^{2}. On démontre que μ est une moyenne de la mesure de Haar et une probabilité discrète portée par des points rationnels. La même conclusion reste vraie sous l'hypothèse que μ est v-stationnaire, donc $\mu=\nu * \mu$, où v est une probabilité sur Γ à support fini et engendrant Γ. L'approche se généralise aux sous-groupes Γ de $\mathrm{SL}_{d}(\mathbb{Z})$. Pour citer cet article : J. Bourgain et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous considérons l'action de $\mathrm{SL}_{2}(\mathbb{Z})$ sur le tore \mathbb{T}^{2}. Soit Γ un sous-groupe non-élémentaire du $\mathrm{SL}_{2}(\mathbb{Z})$. Soit μ une mesure sur \mathbb{T}^{2} que nous supposons Γ-invariante, ou, moins restrictivement, que μ est v-stationnaire pour une probabilité v sur Γ à support fini et tel que $\langle\operatorname{supp} \nu\rangle=\Gamma$. Nous démontrons que si μ n'est pas un multiple de la mesure de Haar sur \mathbb{T}^{2}, alors μ a une composante discrète. La méthode comporte plusieurs étapes et des techniques d'analyse harmonique y jouent un rôle essentiel. Supposons la transformée de Fourier $\hat{\mu}(b) \neq 0$ pour un élément $b \in \mathbb{Z}^{2} \backslash\{0\}$. Le point de départ consiste à étudier l'ensemble $\Lambda_{c}=\left\{n \in \mathbb{Z}^{2} ;|\hat{\mu}(n)|>c\right\}$ ($c>0$ approprié) et de

[^0]montrer que Λ_{c} est «riche», en un certain sens d'entropie métrique. On utilise ici divers arguments d'amplification et un résultat d'équirépartition pour convolutions multiplicatives sur \mathbb{R}, qui repose sur le théorème «somme-produit» obtenu dans [3] et [4]. Ensuite on déduit de la structure de Λ_{c} des propriétés de «porosité» pour le support de μ et finalement une composante discrète.

1. Introduction: main theorems

In this Note we present some new dichotomies for invariant and stationary measures μ on \mathbb{T}^{2} under the action of $\mathrm{SL}_{2}(\mathbb{Z})$-subgroups.

Theorem A. If μ is invariant under the action of a non-elementary subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$, then μ is a linear combination of Haar measure on \mathbb{T}^{2} and an atomic measure supported by rational points.

Theorem B. The same conclusion holds if we assume μ is v-stationary, i.e. $\mu=v * \mu=\sum_{g \in \Gamma} \nu(g) g_{*} \mu$, with $v a$ finitely supported probability measure on $\mathrm{SL}_{2}(\mathbb{Z})$ such that $\Gamma=\langle\operatorname{supp} \nu\rangle$ is a non-elementary subgroup.

Theorem C. If for a point $\theta \in \mathbb{T}^{2}$ the measure $\eta_{n}=\nu^{(n)} * \delta_{\theta}$ has Fourier coefficient $\left|\hat{\eta}_{n}(b)\right|>\delta$ for some $b \in \mathbb{Z}^{2} \backslash\{0\}$, then θ admits a rational approximation

$$
\begin{equation*}
\left\|\theta-\frac{a}{q}\right\|<e^{-c n} \quad \text { for some } q \in \mathbb{Z}_{+},|q|<\left(\frac{\|b\|}{\delta}\right)^{C} \tag{1}
\end{equation*}
$$

with $c, C>0$ depending on ν.
Theorem C answers the question of equidistribution, posed by Y. Guivarc'h [9].
Theorem D. Unless $\theta \in \mathbb{T}^{2}$ is rational, $\nu^{(n)} * \delta_{\theta}$ tend weak k^{*} to Lebesgue measure as $n \rightarrow \infty$.
Comments. (1) The results extend to $\mathrm{SL}_{d}(\mathbb{Z})$, assuming that supp (ν) generates a Zariski dense subgroup in $\mathrm{SL}_{d}(\mathbb{R})$ or, more generally, assuming that the smallest algebraic subgroup $H_{v} \subset \operatorname{SL}_{d}(\mathbb{R})$ supporting v, is strongly irreducible (leaves invariant no finite union of \mathbb{R}^{d}-hyperplanes) and contains a proximal element. Under these conditions the top exponent is simple (see [8]).
(2) v-stationary measures play an important role in the theory of boundaries of groups, and were systematically used by H. Furstenberg and others in many works. In his paper [7] H. Furstenberg explores the relationship between ν-stationary measures and Γ-invariant measures, where v is a probability measure on Γ whose support generates Γ. For a general action of Γ on a space X there is a big difference between the two concepts: indeed, if X is compact ν-stationary measures always exist but there may well be no Γ-invariant probability measure whatsoever. In [7] Furstenberg introduces the notion of stiff actions: an action of a group Γ on a space X is said to be v-stiff if every v-stationary measure is in fact Γ-invariant, and proves stiffness for the action of $\Gamma=\operatorname{SL}(d, \mathbb{Z})$ on \mathbb{T}^{d} where v is a (very) carefully chosen probability measure on $\operatorname{SL}(d, \mathbb{Z})$.

Furstenberg conjectured that this action is stiff for any v whose support generates $\operatorname{SL}(d, \mathbb{Z})$. Theorem B and its extension to $d>2$ establish in particular this conjecture. Moreover, in conjunction with strong approximation results such as those in [20,17], our results imply that the action is 'superstiff', in the sense that if 〈supp $v\rangle$ is Zariski dense in $\operatorname{SL}(d, \mathbb{R})$, any v-stationary measure on \mathbb{T}^{d} is invariant under a finite index subgroup of $\operatorname{SL}(d, \mathbb{Z})$ (depending only on supp ν).
(3) Theorem A may be viewed as a non-Abelian analogue of the well-known $\times 2, \times 3$ invariant measure problem on the circle \mathbb{T}. Thus the conjecture states that if $\mu \in M(\mathbb{T})$ satisfies $\hat{\mu}(n)=\hat{\mu}(2 n)=\hat{\mu}(3 n)$ for all $n \in \mathbb{Z}$, then μ is a combination of Haar and discrete measures. It is known that if we assume moreover that μ has positive entropy, then μ is Haar (see [18] and [11,12,5] for the generalization to \mathbb{Z}^{d}-actions on tori). However, in the context of $\times 2, \times 3$ problem, or its toral analogues, statements such as Theorem D do not hold.
(4) We also recall that there are (Abelian and non-Abelian) counterparts for orbit closures. In the Abelian case, these are the dichotomy results of H. Furstenberg [6] and D. Berend [1]. The non-Abelian problem for Γ-orbits, $\Gamma \subset$ $\mathrm{SL}_{d}(\mathbb{Z})$ a semigroup action on \mathbb{T}^{d}, appears for example in G.A. Margulis list of open problems [14]. Contributions
here include the work of G.A. Starkov [19] (for Γ a strongly irreducible subgroup of $\mathrm{SL}_{d}(\mathbb{Z})$), R. Muchnik $[15,16]$ (Γ a Zariski dense semigroup) and Guivarc'h-Starkov [10].

2. Idea of the proofs

Next, we give a brief overview of the proof of Theorem B. The proof of Theorem C (which implies D, B and A) uses the same ingredients - see comments at the end. There are several distinct steps in the proofs which we summarize.

Assume μ is a v-stationary probability measure on \mathbb{T}^{2} different from the Haar measure. Thus

$$
\hat{\mu}(b) \neq 0 \quad \text { for some } b \in \mathbb{Z}^{2} \backslash\{0\}
$$

and hence

$$
\begin{equation*}
\sum_{g}\left|\hat{\mu}\left(g^{t}(b)\right)\right| \cdot v^{(r)}(g) \geqslant|\hat{\mu}(b)|=c \tag{2}
\end{equation*}
$$

for any convolution power $v^{(r)}$ of v. It is clear from (2) that μ has many large Fourier coefficients; in fact there is $\delta>0$ such that

$$
\left.\left\lvert\,\left\{n \in \mathbb{Z}^{2}:\|n\| \leqslant N \text { and }|\hat{\mu}(n)|>\frac{1}{2} c\right\}\right. \right\rvert\,>N^{\delta}
$$

for all sufficiently large N. However, unless δ is sufficiently close to 2 , we need a more structured set of large Fourier coefficients. This is achieved in
Step 1 (amplification).
Lemma 1. There are positive constants $\beta>0$ and $\kappa>0$ such that for all sufficiently large $N \in \mathbb{Z}_{+}$, there is a set $\mathcal{F} \subset \mathbb{Z}^{2} \cap B(0, N)$ with the following properties
(a) $|\hat{\mu}(k)|>\beta$ for $k \in \mathcal{F}$.
(b) $\left|k-k^{\prime}\right|>N^{1-\kappa}$ if $k \neq k^{\prime}$ in \mathcal{F}.
(c) $|\mathcal{F}|>\beta N^{2 k}$.

Our proof of Lemma 1 is rather involved. It is obtained by combining the following two ingredients.
Denote $\delta(\bar{x}, \bar{y})$ the angular distance on the projective space $P\left(\mathbb{R}^{2}\right)$. The following statement is obtained by combining Proposition 4.1 (p. 161) and Theorem 2.5 (p. 106) from [2]:

Proposition 2 (small ball estimate). There is a uniform estimate for $\bar{x}, \bar{y} \in P\left(\mathbb{R}^{2}\right)$

$$
\sum_{\delta(g \bar{x}, \bar{y})<\varepsilon} v^{(n)}(g)<C\left(\varepsilon^{\alpha}+\mathrm{e}^{-c n}\right)
$$

for some $\alpha, c, C>0$.
We also use the large deviation estimate for the Lyapunov exponent γ (Theorem 6.2, p. 131 in [2]), which gives:
Proposition 3. Uniformly in $x,\|x\|=1$:

$$
v^{(n)}\left\{g:\left|\frac{1}{n} \log \|g x\|-\gamma\right|>\frac{\gamma}{10}\right\}<C \mathrm{e}^{-c n} .
$$

The combinatorial information that can be extracted from Proposition 2 on the set of large Fourier coefficients is amplified using the following general statement on mixed multiplicative and additive convolution on \mathbb{R} (which may be of independent interest).

Proposition 4. Given $\theta>0, C>1$, there are $s \in \mathbb{Z}_{+}$and $C^{\prime}>1$ such that the following holds.
Let $\delta>0$ and η a probability measure on $\left[\frac{1}{2}, 1\right]$ satisfying

$$
\max _{a} \eta(B(a, \rho))<C \rho^{\theta} \quad \text { for } \delta<\rho<1
$$

Consider the image measure v of $\eta \otimes \cdots \otimes \eta\left(s^{2}\right.$-fold) under the map

$$
\left(x_{1}, \ldots, x_{s^{2}}\right) \mapsto\left(x_{1} \ldots x_{s}\right)+\left(x_{s+1} \ldots x_{2_{s}}\right)+\cdots+\left(x_{s^{2}-s+1} \ldots x_{s^{2}}\right) .
$$

Then

$$
\max _{a} v(B(a, \rho))<C^{\prime} \rho \quad \text { for } \delta<\rho<1
$$

where here $B(a, \rho)=[a-\rho, a+\rho]$.
Proposition 4 is deduced from a set-theoretical statement, which is the 'discretized ring conjecture' (in the sense of [13]); see [3,4].

Returning to Lemma 1, there is the following implication on the support of μ.
Step 2 (porosity property).
Using elementary harmonic analysis, one shows the following general result:
Lemma 5. Let μ be a probability measure on $\mathbb{T}^{d}, d \geqslant 1$. Fix $\kappa_{1}, \kappa_{2}>0$.
Let $N \gg M$ be large integers and assume

$$
\mathcal{N}\left(\left[|\hat{\mu}|>\kappa_{1}\right] \cap B(0, N) ; M\right)>\kappa_{2}\left(\frac{N}{M}\right)^{d}
$$

where for $A \subset \mathbb{Z}^{d}$ and $R>1, \mathcal{N}(A ; R)$ denotes the smallest number of balls of radius R needed to cover A.
Then there are points $x_{1}, \ldots, x_{\beta} \in \mathbb{T}^{d}$ such that

$$
\begin{aligned}
& \left\|x_{\alpha}-x_{\alpha^{\prime}}\right\|>\frac{1}{M} \quad \text { for } \alpha \neq \alpha^{\prime}, \\
& \sum_{\alpha} \mu\left(B\left(x_{\alpha}, \frac{1}{N}\right)\right)>\rho\left(\kappa_{1}, \kappa_{2}\right)>0 .
\end{aligned}
$$

Combined with Lemma 1 ($d=2$ and taking $\kappa_{1}=\beta=\kappa_{2}, M=N^{1-\kappa}$), we obtain therefore
Lemma 6. For all N large enough, there are points $x_{1}, \ldots, x_{\beta} \in \mathbb{T}^{2}$ such that $\left\|x_{\alpha}-x_{\alpha^{\prime}}\right\|>\frac{1}{N^{1-\kappa}}$ for $\alpha \neq \alpha^{\prime}$ and

$$
\sum_{\alpha} \mu\left(B\left(x_{\alpha}, \frac{1}{N}\right)\right)>\rho .
$$

Our next aim is to improve the porosity property obtained in Lemma 6 by decreasing the radius of the balls. Step 3 (bootstrap).

Starting from the statement in Lemma 6 and using the group action, we prove
Lemma 7. For any fixed number C_{0}, there is a collection of points $\left\{z_{\alpha}\right\} \in \mathbb{T}^{2}$ such that

$$
\left\|z_{\alpha}-z_{\alpha^{\prime}}\right\|>\frac{1}{2 N^{1-\kappa}}>\frac{1}{N} \quad \text { for } \alpha \neq \alpha^{\prime}
$$

and

$$
\sum_{\alpha} \mu\left(B\left(z_{\alpha}, \frac{1}{N^{C_{0}}}\right)\right)>\rho\left(C_{0}\right)>0
$$

The statement follows from a simple iterative construction. Under the action of $\mathrm{SL}_{2}(\mathbb{Z})$-elements, the balls become elongated ellipses and intersecting different families leads to sets of smaller diameter.
Step 4 (rational approximation).
Assume

$$
\begin{equation*}
\mu(B(x, \varepsilon))>\varepsilon^{\tau} \tag{3}
\end{equation*}
$$

where $\varepsilon>0$ is small and $\tau>0$ a fixed exponent.
Take $n \sim\left(\frac{1}{\varepsilon}\right)^{1 / 2}$ and make a Diophantine approximation

$$
\begin{equation*}
\left|x_{1}-\frac{a_{1}}{q}\right|<\frac{1}{q \sqrt{n}}, \quad\left|x_{2}-\frac{a_{2}}{q}\right|<\frac{1}{q \sqrt{n}} \tag{4}
\end{equation*}
$$

where $1 \leqslant q \leqslant n$ and $\operatorname{gcd}\left(a_{1}, a_{2}, q\right)=1$. It follows from (3), (4) that

$$
\mu\left(B\left(\frac{a}{q}, \frac{2}{q \sqrt{n}}\right)\right)>\varepsilon^{\tau}
$$

and the v-stationarity of μ implies for any $r \in \mathbb{Z}_{+}$

$$
\begin{equation*}
\sum_{g} \mu\left(B\left(\frac{g(a)}{q}, \frac{2\|g\|}{q \sqrt{n}}\right)\right) \cdot v^{(r)}(g)>\varepsilon^{\tau} \tag{5}
\end{equation*}
$$

Take $r \sim \log n$ as to ensure that $\|g\|<n^{1 / 3}$ if $g \in \operatorname{supp} \nu^{(r)}$. It follows then from (5) and our choice of r that

$$
\varepsilon^{\tau} \leqslant \sum_{b \in \mathbb{Z}_{q}^{2}} \mu\left(B\left(\frac{b}{q}, \frac{1}{2 q}\right)\right) \cdot v^{(r)}(\{g \mid g a \equiv b(\bmod q)\}) .
$$

A spectral gap of the form $\left\|\nu^{(r)}\right\| \leqslant q^{-\omega_{1}}, r \geqslant \log q$, on $\ell^{2}\left(\mathbb{Z}_{q}^{2}\right) \ominus \mathbb{C}$ with some fixed $\omega_{1}>0$ depending only on v, yields the estimate

$$
\begin{equation*}
\max _{b \in \mathbb{Z}_{q}^{2}} v^{(r)}(\{g \mid g a \equiv b(\bmod q)\})<q^{-\omega}, \quad q<\left(\frac{1}{\varepsilon}\right)^{\tau / \omega} . \tag{6}
\end{equation*}
$$

Recalling the conclusion of Lemma 7, the exponent τ in (3) may be taken to be an arbitrary small fixed positive number. In particular, we may ensure that in (6), $q<Q(\varepsilon)<\left(\frac{1}{\varepsilon}\right)^{1 / 20}$. Thus we proved that there is $\rho_{1}>0$ such that for all $\varepsilon>0$ small enough

$$
\begin{equation*}
\mu\left(\mathfrak{S}_{Q(\varepsilon), \varepsilon^{1 / 4}}\right)>\rho_{1} \tag{7}
\end{equation*}
$$

where we denote

$$
\begin{equation*}
\mathfrak{S}_{Q, \varepsilon}=\bigcup_{q<Q} \bigcup_{(a, q)=1} B\left(\frac{a}{q}, \varepsilon\right) \tag{8}
\end{equation*}
$$

Step 5 (conclusion).
Starting from (7) with $\varepsilon=\varepsilon_{0}$ small enough (depending on ρ_{1}), we perform again an iterative bootstrap (as in Step 3), invoking the following.

Lemma 8. Let $\mathfrak{S}_{Q, \varepsilon}$ be as above and let $n=n(\varepsilon) \in \mathbb{Z}_{+}$satisfying

$$
n<c \log \frac{1}{\varepsilon} \quad(c \text { depending on } v)
$$

Assume

$$
\left(v^{(n)} * \mu\right)\left(\mathfrak{S}_{Q, \varepsilon}\right)=\sum v^{(n)}(g) \mu\left(g^{-1}\left(\mathfrak{S}_{Q, \varepsilon}\right)\right)>\kappa
$$

Then we have $\mu\left(\mathfrak{S}_{Q, \varepsilon^{\prime}}\right)>\kappa-\mathrm{e}^{-c_{2} n}$ where $\varepsilon^{\prime}=\mathrm{e}^{-\frac{1}{4} \gamma n} \varepsilon$.

The proof of Lemma 8 uses again Propositions 2 and 3.
Thus with $Q=Q\left(\varepsilon_{0}\right)$ fixed, ε is gradually decreased and in the limit we obtain

$$
\mu\left(\left\{\frac{a}{q} ; 1 \leqslant q<Q\left(\varepsilon_{0}\right), 0 \leqslant a_{1}, a_{2}<q\right\}\right)>\frac{1}{2} \rho_{1}>0 .
$$

This establishes Theorem B.
We conclude with some comments on the proof of Theorem C. For $m \geqslant 1$ we denote by

$$
\begin{equation*}
\eta_{m}=v^{(m)} * \delta_{\theta} \tag{9}
\end{equation*}
$$

the measure on \mathbb{T}^{2} (δ_{x} stands here for the Dirac measure). In these notations, the assumption of Theorem C becomes

$$
\begin{equation*}
\left|\hat{\eta}_{n}(b)\right|>\delta \quad \text { where } b \in \mathbb{Z}^{2} \backslash\{0\} . \tag{10}
\end{equation*}
$$

The proof of steps $1-4$ is quantitative, and even though μ_{m} is not v-stationary, these arguments can still be applied if one is willing to sacrifice a few powers of ν.

For example, in step 1 we may conclude from (10) that for any $k<n$ there is some N with $c_{3} k<\log N<c_{4} k$ and a set $\mathcal{F} \subset \mathbb{Z}^{2} \cap B(0, N)$ satisfying (a)-(c) of Lemma 1 for $\mu=\mu_{n-k}$ and $\beta=(\delta /\|b\|)^{C}$ (where C and c_{3}, c_{4}, as well as all the other constants appearing below depend only on ν). Similarly modifying steps $2-4$ we conclude that for any k^{\prime} in the range $C^{\prime} \log (\|b\| / \delta)<k^{\prime}<n$ there are $Q, \epsilon=Q^{-20}$ with $c_{3}^{\prime} k^{\prime}<\log Q<c_{4}^{\prime} k^{\prime}$ satisfying (cf. (7)) $\eta_{n-k^{\prime}}\left(\mathfrak{S}_{Q, \varepsilon}\right)>(\delta /\|b\|)^{C}$.

Let $n^{\prime}=n-k^{\prime}$ for $c_{5} \log (\|b\| / \delta)<k^{\prime}<n / 2$, with c_{5} a large constant. Since $\eta_{n^{\prime}}=v^{\left(n^{\prime}\right)} * \delta_{\theta}$, if c_{5} is sufficiently large, iteration of Lemma 8 imply that $\delta_{\theta}\left(\mathfrak{S}_{Q, \varepsilon^{\prime}}\right)>(\delta /\|b\|)^{C}-\max \left(Q^{-c_{3}}, \mathrm{e}^{-c_{2} n^{\prime}}\right)>0$ where $\varepsilon^{\prime}<\mathrm{e}^{-\frac{1}{4} \gamma n^{\prime}} \varepsilon<\mathrm{e}^{-\frac{1}{8} \gamma n}$, i.e. $\theta \in \mathfrak{S}_{Q, \varepsilon^{\prime}}$. Since $Q<(\|b\| / \delta)^{C_{0}}$ for some C_{0}, Eq. (1) of Theorem C follows.

References

[1] D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280 (2) (2000) 509-532.
[2] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985.
[3] J. Bourgain, On the Erdös-Volkmann and Katz-Tao ring conjecture, GAFA 13 (2003) 334-365.
[4] J. Bourgain, A. Gamburd, On the spectral gap for finitely-generated subgroups of $S U(2)$, preprint, Invent., submitted for publication.
[5] M. Einsiedler, E. Lindenstrauss, Rigidity properties of Z^{d}-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc. 9 (2003) 99-110.
[6] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967) 1-49.
[7] H. Furstenberg, Stiffness of group actions, in: Lie Groups and Ergodic Theory, Mumbai, 1996, in: Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105-117.
[8] I.Ya. Gol'dsheĭd, G.A. Margulis, Lyapunov exponents of a product of random matrices, Uspekhi Mat. Nauk 44 (5(269)) (1989) 13-60 (in Russian). Translation in Russian Math. Surveys 44 (5) (1989) 11-71.
[9] Y. Guivarc'h, private communication.
[10] Y. Guivarc'h, A.N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms, Ergodic Theory Dynam. Systems 24 (3) (2004) 767-802.
[11] B. Kalinin, A. Katok, Invariant measures for actions of higher rank abelian groups, in: Smooth Ergodic Theory and its Applications, Seattle, WA, 1999, in: Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc. Providence, RI, 2001, pp. 593-637.
[12] A. Katok, R. Spatzier, Invariant measures for higher rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (4) (1996) $751-778$.
[13] N. Katz, T. Tao, Some connections between Falconer's distance set conjecture and sets of Furstenberg type, New York J. Math. 7 (2001) 149-187.
[14] G.A. Margulis, Problems and conjectures in rigidity theory, in: Mathematics: Frontiers and Perspectives, Amer. Math. Soc., 2000 , pp. $161-174$.
[15] R. Muchnik, Orbits of Zariski dense semigroups of $\operatorname{SL}(n, \mathbb{Z})$, Ergodic Theory Dynam. Systems.
[16] R. Muchnik, Semigroup actions on T^{n}, Geom. Dedicata 110 (2005) 1-47.
[17] R. Pink, Strong approximation for Zariski dense subgroups over arbitrary global fields, Comment. Math. Helv. 75 (4) (2000) 608-643.
[18] D. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (2) (1990) 395-406.
[19] A.N. Starkov, Orbit closures of toral automorphism groups, preprint, Moscow, 1999.
[20] B. Weisfeiler, Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. (2) 120 (2) (1984) $271-315$.

[^0]: \# This research is supported in part by NSF DMS grants 0627882 (JB), 0604611 (AF), $0500205 \& 0554345$ (EL) and BSF grant 2004-010 (SM).
 1631-073X/\$ - see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2007.04.017

