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Abstract

Let F be a field and let n,p1,p2,p3 be positive integers such that n = p1 + p2 + p3. Let

A =
[

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

]
∈ Fn×n,

where the blocks Ai,j are of type pi × pj , i, j ∈ {1,2,3}, and the blocks in the positions (i, i) are square. We describe the
characteristic polynomial of A, when:

(i) A1,1, A1,2 and A3,3 are fixed and the other blocks vary;
(ii) A1,1, A1,2 and A2,3 are fixed and the remaining blocks vary. To cite this article: G. Cravo, C. R. Acad. Sci. Paris, Ser. I

344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Quelques problèmes de complétion de matrices. Soit F un corps et soient n,p1,p2,p3 des entiers positifs tels que n =
p1 + p2 + p3. Soit

A =
[

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

]
∈ Fn×n,

où les blocs Ai,j sont de type pi × pj , i, j ∈ {1,2,3}. Nous étudions le polynôme caractéristique de la matrice A, quand :
(i) A1,1,A1,2 et A3,3 sont connus et les autres blocs varient ;
(ii) A1,1,A1,2 et A2,3 sont connus et les autres blocs varient. Pour citer cet article : G. Cravo, C. R. Acad. Sci. Paris, Ser. I 344

(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Motivation

In the theory of matrices, there exists an important class of problems called the Matrix Completion Problems.
These problems arose from a large variety of applications, such as control theory, control design, geophysics, circuit
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theory. As an example the Pole Assignment Problem is a very important problem in control theory. The general
idea of this type of problems consists in studying the possibility to ‘complete’ a matrix, when some of its entries
are prescribed (i.e., are fixed), such that the resulting matrix satisfies certain properties. In this context ‘to complete’
means to attribute values to the remaining entries. Throughout the last decades these type of problems have often been
studied by many authors.

One important problem in Matrix Completion Problems, consists to studying the spectrum of an n × n matrix,
with entries in a field F , when some of its entries are fixed and the others vary. One of the earliest results concerning
this subject was obtained by Schur in 1923. The author proved that the diagonal of an n × n Hermitian matrix with
spectrum S = {c1, . . . , cn} is contained in the convex hull of symmetric group actions on S. In 1954, A. Horn, proved
that each point in the convex hull can be obtained in the same way, that is, as the diagonal of some Hermitian matrix.
Later, other authors, such as L. Mirsky, H.K. Farahat and W. Lederman, D. London and H. Minc, G.N. Oliveira studied
this problem. The most general result concerning this question was obtained by D. Hershkowitz in [4]. The author
showed that it is possible to prescribe 2n − 3 entries of the matrix, simultaneously with the spectrum of the matrix,
except in some exceptional cases.

Another important problem, that motivates our work is the following, a particular case of the Matrix Completion
Problems, proposed by G.N. Oliveira in 1975.

Let F be a field. We denote by Fp×q the set of all matrices of type p × q , with entries in F .

Problem. [5] Let n,p,q be positive integers such that n = p+q . Let f (x) ∈ F [x] be a monic polynomial of degree n.
Let

A =
[

A1,1 A1,2

A2,1 A2,2

]
∈ Fn×n, (1)

be a partitioned matrix, where A1,1 ∈ Fp×p , A2,2 ∈ Fq×q . Suppose that some of the blocks Ai,j , i, j ∈ {1,2}, are
known. Under which conditions does there exist a matrix of the form (1) with characteristic polynomial f (x)?

Note that this problem can be split into essentially seven distinct problems, according to the prescription of some
blocks of A: A1,1 prescribed; A1,2 prescribed; A1,1 and A1,2 prescribed; A1,1 and A2,2 prescribed; A1,2 and A2,1

prescribed; A1,1,A1,2 and A2,2 prescribed; A1,1,A1,2 and A2,1 prescribed. Some of these problems are completely
solved, but there are cases for which there exist only partial solutions.

Note that if all the roots of f (x) are in F , these problems consist in studying the eigenvalues of a matrix of the
form (1) when some of its blocks are fixed and the remaining blocks vary.

Motivated by the fascination of this type of problems, we had the purpose to solve the following problem.
Let F be an arbitrary field. Let n, k,p1, . . . , pk be positive integers such that n = p1 +· · ·+pk . Let c1, . . . , cn ∈ F .

Let

A =
⎡
⎢⎣

A1,1 · · · A1,k

...
...

Ak,1 · · · Ak,k

⎤
⎥⎦ ∈ Fn×n, (2)

where the blocks Ai,j ∈ Fpi×pj , i, j ∈ {1, . . . , k}, and A1,1, . . . ,Ak,k are square submatrices.

Problem. Suppose that some of the blocks Ai,j are prescribed. Under which conditions does there exist a matrix of
the form (2) with eigenvalues c1, . . . , cn?

This problem is a unification of the previous problems and was studied by the present author in her PhD thesis [3],
by supervision of F.C. Silva (also see the references). The study of this problem when arbitrary blocks are prescribed,
becomes very difficult. In fact if the prescribed positions correspond to ‘large’ submatrices, then there are necessary
interlacing inequalities involving invariant factors [6,7]. In this paper we present some results obtained for the case
k = 3.
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2. Main results

From now on, suppose that k = 3. Let F be an algebraically closed field and let f ∈ F [x] be a monic polynomial
of degree n.

In the following result we describe the characteristic polynomial of a matrix of the form (2), when A1,1,A1,2,A3,3
are fixed and the remaining blocks vary.

Theorem 2.1. [1] Let A1,1 ∈ Fp1×p1 , A1,2 ∈ Fp1×p2, A3,3 ∈ Fp3×p3 . Let α1 | · · · | αp1 be the invariant factors of

[xIp1 − A1,1| − A1,2] (3)

and let β1 | · · · | βp3 be the invariant polynomials of A3,3.
If p1 � p3 � p1 + p2, there always exist A1,3 ∈ Fp1×p3 , A2,1 ∈ Fp2×p1 , A2,2 ∈ Fp2×p2 , A2,3 ∈ Fp2×p3 , A3,1 ∈

Fp3×p1 , A3,2 ∈ Fp3×p2 such that the matrix of the form (2) has characteristic polynomial f .
Now consider the following conditions:

(i2.1) If p1 > p3, then α1 · · ·αp1−p3 |f ;
(ii2.1) If p3 > p1 + p2, then β1 · · ·βp3−p1−p2 |f .

Then there exists A1,3 ∈ Fp1×p3 , A2,1 ∈ Fp2×p1 , A2,2 ∈ Fp2×p2 , A2,3 ∈ Fp2×p3 , A3,1 ∈ Fp3×p1 , A3,2 ∈ Fp3×p2

such that the matrix of the form (2) has characteristic polynomial f if and only if either (i2.1) or (ii2.1) is satisfied.

The next two lemmas were established to simplify the proof of Theorem 2.4, where we describe the characteristic
polynomial of a matrix of the form (2), when A1,1,A1,2,A2,3 are fixed and the other blocks vary.

Lemma 2.2. [2] Let A1,1 ∈ Fp1×p1,A1,2 ∈ Fp1×p2 and let α1| · · · |αp1 be the invariant factors of (3). Let t be the
greatest index in {0,1, . . . , p1} such that αt = 1. Let r = rankA1,2 and let k1 � · · · � kr > kr+1 = · · · = kp2(= 0) be
the minimal indices for the columns of (3). Let s = k1 +· · ·+kp2 . Then, there exists a nonsingular matrix P ∈ Fp1×p1

such that

P −1 [
A1,1 A1,2

][
P 0
0 Ip2

]
=

[
N 0
T M1

∣∣∣∣ 0
M2

]
,

where N = C(αt+1) ⊕ · · · ⊕ C(αp1) ∈ F (p1−s)×(p1−s), (M1,M2) is a completely controllable pair, where
M1 ∈ F s×s ,M2 ∈ F s×p2 and T ∈ F s×(p1−s).

Lemma 2.3. [2] Let A1,1 ∈ Fp1×p1 ,A1,2 ∈ Fp1×p2 ,A2,3 ∈ Fp2×p3 . Let P ∈ Fp1×p1 be a nonsingular matrix such
that [

A′
1,1 A′

1,2

] = P −1 [
A1,1 A1,2

][
P 0
0 Ip2

]
.

Then there exists A1,3 ∈ Fp1×p3,A2,1 ∈ Fp2×p1,A2,2 ∈ Fp2×p2,A3,1 ∈ Fp3×p1 , A3,2 ∈ Fp3×p2 ,A3,3 ∈ Fp3×p3 such
that the matrix of the form (2) has characteristic polynomial f if and only if there exists A′

1,3 ∈Fp1×p3,A′
2,1 ∈Fp2×p1 ,

A′
2,2 ∈ Fp2×p2,A′

3,1 ∈ Fp3×p1,A′
3,2 ∈ Fp3×p2 ,A′

3,3 ∈ Fp3×p3 such that

A′ =
⎡
⎢⎣

A′
1,1 A′

1,2 A′
1,3

A′
2,1 A′

2,2 A2,3

A′
3,1 A′

3,2 A′
3,3

⎤
⎥⎦

has characteristic polynomial f .

Theorem 2.4. [2] Let A1,1 ∈ Fp1×p1,A1,2 ∈ Fp1×p2,A2,3 ∈ Fp2×p3 . Let α1| · · · |αp1 be the invariant factors of (3).
Then there exists A1,3 ∈ Fp1×p3,A2,1 ∈ Fp2×p1,A2,2 ∈ Fp2×p2,A3,1 ∈ Fp3×p1 , A3,2 ∈ Fp3×p2 ,A3,3 ∈ Fp3×p3 such
that the matrix of the form (2) has characteristic polynomial f if and only if

α1 · · ·αp −p |f.
1 3
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(Make convention that α1 · · ·αp1−p3 = 1 if p1 � p3.)

Remark 1. According to the previous lemmas, to prove Theorem 2.4, we may assume, without loss of generality, that
[ A1,1 A1,2 ] has the form[

N 0
T M1

∣∣∣∣ 0
M2

]
,

where N , M1, M2 and T satisfy the conditions of Lemma 2.2.

Remark 2. Theorems 2.1 and 2.4 are extensions of Oliveira’s problem [5], when F is an algebraically closed field.
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