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Abstract

Recent investigations in optimization theory concerning the structure of positive polynomials with a sparsity pattern are inter-
preted in the more invariant language of (iterated) fibre products of real algebraic varieties. This opens the perspective of treating
on a unifying basis the cases of positivity on unbounded supports, on non-semialgebraic supports, or of polynomials depending on
countably many variables. To cite this article: S. Kuhlmann, M. Putinar, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Polynômes positifs sur des produits fibrés. Nous présentons une interprétation algébrique (dans le langage des produits fibrés
de variétés algébriques) de résultats récents en théorie de l’optimisation concernant la structure de polynômes positifs (sur un sous
ensemble compact et semi-algébrique K ⊂ Rn) qui satisfont certaines conditions de séparation des variables dans leurs monômes.
Ceci offre la perspective d’un traitement uniforme de tels polynômes, positifs sur K non-compact, ou non-semi-algébrique, ainsi
que pour des polynômes en un nombre dénombrable de variables. Pour citer cet article : S. Kuhlmann, M. Putinar, C. R. Acad.
Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A be a commutative ring with 1. For simplicity we assume that Q ⊂ A. A quadratic module Q ⊂ A is a subset
of A such that Q+Q ⊂ Q,1 ∈ Q and a2Q ⊂ A for all a ∈ A. We denote by Q(M;A) the quadratic module generated
in A by the set M . That is Q(M;A) is the smallest subset of A which is closed under addition and multiplication by
squares a2, a ∈ A, containing M and the unit 1 ∈ A. If M is finite, we say that the quadratic module is finitely
generated. A quadratic module which is also closed under multiplication is called a quadratic preordering.

In the terminology used throughout this Note, a real algebraic, affine variety X ⊂ Rd is the common zero set of a
finite set of polynomials, and the algebra of regular functions on X is
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A = R[X] = R[x1, . . . , xd ]/I (X),

where I (X) is the radical ideal associated to X. The non-negativity set of a subset S ⊂ R[X] is

P(S) = {
x ∈ X;f (x) � 0, f ∈ S

}
.

The duality between finitely generated quadratic modules and non-negativity sets plays a similar role in semialgebraic
geometry to the classical pairing between ideals and algebraic varieties, see [11] for details. A quadratic module
Q ⊂ R[X] is archimedean if for every element f ∈ R[X] there exists a positive scalar α such that 1 + αf ∈ Q. It is
easy to see that the non-negativity set of an archimedean quadratic module is always compact.

The following Striktpositivestellensatz has attracted in the last decade a lot of attention from practitioners of poly-
nomial optimization: Let Q ⊂ R[x1, . . . , xd ] be an archimedean quadratic module and assume that a polynomial f is
positive on P(Q). Then f ∈ Q.

The above fact was discovered by the second author [12], generalizing Schmüdgen’s Striktpositivestellensatz [14]
for the finitely generated preordering associated to a compact non-negativity set.

The two main results of the present Note are Theorems 2.1 and 2.3. Theorem 2.1 generalizes the above Striktpos-
itivstellensatz to certain fibre products of algebraic varieties, indexed over a rooted tree (see Section 2 below for this
terminology). In the case of fibre products of affine spaces, we recover in Corollary 2.5 recently proved results on the
representations of positive sparse polynomials (that is, polynomials in which every monomial involves only variables
from blocks of variables satisfying certain overlap conditions); see [3,4,8,9,15]. It is worth remarking that Lasserre [8]
uses in his proofs, as we do, a natural disintegration of measures argument, but this is done in a direct way, namely by
relaxing the point evaluations in polynomial optimization over semialgebraic sets by averages over probability mea-
sures. The rooted tree projective system corresponds to what is known in the applied mathematics community as the
running intersection property, see [3,4,8]. The benefits of Theorem 2.3 lie in the fact that non-semialgebraic supports
can be described as projective limits of a sequence of semialgebraic ones, and also in the possibility of covering the
case of polynomials depending on an infinity of variables.

Finally, the separation arguments in our proofs below seem to carry over to certain non-compact supports, for which
a close form of the Striktpositivstellensatz is available (see for details [6,7,10,13]). In this case the quadratic modules
Qi have to be replaced by the quadratic preorderings. We will resume this idea, with full details, in a forthcoming
article.

2. Main results

Let I be a non-empty set, endowed with a partial order relation i � j . A projective system of algebraic varieties
indexed over I consists of a family of varieties (affine in our case) Xi, i ∈ I , and morphisms fij :Xj → Xi defined
whenever i � j , and satisfying the compatibility condition fik = fijfjk if i � j � k. The topological projective
limit X = proj.lim(Xi, fij ) is the universal object endowed with morphisms fi :X → Xi satisfying the compatibility
conditions fi = fijfj , i � j . See for instance [2] §6. A directed projective system carries the additional assumption
on the index set that for every pair i, j ∈ I there exists k ∈ I satisfying i � k and j � k.

A finite partially ordered set I = {i0, . . . , in} is called a rooted tree if the order structure is generated by the
inequalities i1 � i0 and for every k > 1, ik � ij (k) with j (k) < k. Regarded as a graph, a rooted tree is obtained
successively from the root i0 by adding one branch at a time.

First we are concerned with finite projective systems of algebraic varieties:

Theorem 2.1. Let (Xi, fij ) be a finite projective system of real affine varieties, indexed by a rooted tree. Let Qi ⊂
R[Xi] be archimedean quadratic modules, subject to the coherence condition f ∗

ijQi ⊆ Qj . Let p ∈ ∑
i f

∗
i R[Xi] be

an element which is positive on the set
⋂

i∈I f −1
i P (Qi). Then p ∈ ∑

i f
∗
i Qi .

The proof consists in an iteration of the following scheme.
Let Z = X1 ×Y X2 be the fibre product of affine real varieties. Specifically

fi :Xi −→ Y, i = 1,2,

are given morphisms and

Z = {
(x1, x2) ∈ X1 × X2; f1(x1) = f2(x2)

}
.
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This is still an algebraic variety, with the ring of regular functions

R[X1 ×Y X2] = R[X1] ⊗R[Y ] R[X2].
Denote by ui :Z → Xi, i = 1,2, the projection maps, so that: f1u1 = f2u2.

Lemma 2.2. With the above notation, let Qi ⊂ R[Xi], i = 1,2, be Archimedean quadratic modules. If an element
p ∈ u∗

1R[X1] + u∗
2R[X2] is strictly positive on the set u−1

1 P(Q1) ∩ u−1
2 P(Q2), then p ∈ u∗

1Q1 + u∗
2Q2.

The proof of the lemma follows an argument by contradiction, widely used in the functional analytic proofs of
similar results. More precisely, assume that p /∈ u∗

1Q1 + u∗
2Q2. Since the two quadratic modules are achimedean, the

element 1 (constant function) belongs to the algebraic interior of the convex cone u∗
1Q1 + u∗

2Q2, regarded as a subset
of the vector space u∗

1R[X1]+u∗
2R[X2]. In virtue of the Eidelheit–Kakutani separation theorem (see [5]), there exists

a real linear functional

L :u∗
1R[X1] + u∗

2R[X2] −→ R

satisfying

L(p) � 0 � L(f ), f ∈ u∗
1Q1 + u∗

2Q2, L(1) > 0.

By the archimedean assumption, there exists positive Borel measures μi , compactly supported on P(Qi), i = 1,2,
satisfying (f1)∗μ1 = (f2)∗μ2 and such that

L
(
u∗

1φ1 + u∗
2φ2

) =
∫
X1

φ1 dμ1 +
∫
X2

φ2 dμ2, φi ∈ R[Xi], i = 1,2.

A classical disintegration of measures theorem (see [2] Proposition IX.2.13) yields a positive Borel measure μ on the
space Z, satisfying (ui)∗μ = μi, i = 1,2 (provided the compatibility condition (f1)∗μ1 = (f2)∗μ2 is fulfilled). Note
that the measure μ representing the extension L̃ of L to R[Z], is supported by the set Π = u−1

1 P(Q1) ∩ u−1
2 P(Q2).

To finish the proof of the lemma remark that

0 � L(p) = L̃(p) =
∫
Π

p dμ > 0,

a contradiction.
A famous theorem of Kolmogorov, refined by Prokhorov, Bochner and other authors, asserts that a countable and

directed projective system of probability measure spaces has a probability measure space as a projective limit, see for
instance [1] Chapter 5, or [2] §4. A couple of applications of this result, following the lines of the preceding proof,
can be stated as follows:

Theorem 2.3. Let X = proj.lim(Xi, fij ) be a countable, directed projective limit of affine real varieties. Let Qi ⊂
R[Xi] be archimedean quadratic modules such that f ∗

ijQi ⊆ Qj . Let p ∈ ∑
i f

∗
i R[Xi] be an element which is positive

on the set
⋂

i∈I f −1
i P (Qi). Then p ∈ ∑

i f
∗
i Qi .

By definition, the above sums are algebraic, that is only finitely many terms in p = ∑
i pi, pi ∈ f ∗

i R[Xi] are
non-zero. When taking limits of elements in the algebraic sums above, we are led to the following variation:

Corollary 2.4. In the condition of the theorem, let f ∈ [∑i fi
∗R[Xi]]− satisfy f � 0 on the compact set Π =⋂

i∈I f −1
i P (Qi). Then f ∈ [∑i f

∗
i Qi]− where the closure in both cases is taken with respect to the uniform conver-

gence on Π .

For the proof of the corollary, we again assume by contradiction that f does not belong to the closed cone in
the statement, and invoke a separation functional result (Minkowski in this case), providing a linear functional L on
[∑i f

∗
i R[Xi]]− which satisfies

L(f ) < 0 � L(g), g ∈
[∑

f ∗
i Qi

]−
.

i
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Kolmogorov’s Theorem yields then a positive measure μ supported by Π , and representing L. Then

0 > L(f ) =
∫
Π

f dμ � 0,

a contradiction.
We now apply Lemma 2.2 to the case of fibre products of affine spaces. Specifically, let X1 = Rn1 ×Rm, X2 = Rm×

Rn2 and Y = Rm, while f1, f2 are the corresponding projection maps onto Y . Denote by x1, y, x2 the corresponding
tuples of variables. Then one immediately identifies Z = Rn1 × Rm × Rn2 , and Lemma 2.2 yields:

Corollary 2.5. Let Qx1,y,Qy,x2 be Archimedean quadratic modules in the respective sets of variables. Let Π =
(P (Qx1,y) × Rn2) ∩ (Rn1 × P(Qy,x2)) ⊂ Z. If a polynomial p(x1, y, x2) = p1(x1, y) + p2(y, x2) is positive on Π ,
then p ∈ Qx1,y + Qy,x2 .
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