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Abstract

We establish that the Cauchy problem associated with a Pfaff system in dimension three has a unique solution under minimal
regularity assumptions on its coefficients. To cite this article: S. Mardare, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la résolution des systèmes de Pfaff en dimension trois. On établit que le problème de Cauchy associé à un système de
Pfaff en dimension trois a une solution unique sous des hypothèses minimales de régularité sur ses coefficients. Pour citer cet
article : S. Mardare, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Les notations sont définies dans la version anglaise. Soit Ω un ouvert connexe et simplement connexe de R
3, soit

x0 un point de Ω , et soit Y 0 une matrice de M
q×�. Il est alors bien connu (voir, e.g., Thomas [5]) que le système de

Pfaff

∂iY = YAi dans Ω, i ∈ {1,2,3},
Y

(
x0) = Y 0,

admet une solution unique Y ∈ C2(Ω;M
q×�) si les coefficients Ai appartiennent à l’espace C1(Ω;M

�) et satisfont
les conditions de compatibilité

∂jAi − ∂iAj = AiAj − AjAi dans Ω pour tout i < j. (1)

L’objet de cette Note est d’établir que ce résultat reste vrai sous une hypothèse considérablement affaiblie, selon
laquelle les coefficients Ai appartiennent à l’espace L

p

loc(Ω;M
�), p > 3, la condition de compatibilité ci-dessus étant

alors satisfaite au sens des distributions (voir Théorème 4.1 dans la version anglaise). La preuve repose sur deux
résultats principaux : un résultat de stabilité pour les systèmes de Pfaff à coefficients dans Lp(Ω) établi dans le
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Théorème 2.1 et un résultat d’approximation (sous les contraintes non linéaires (1)) des champs de matrices Ai établi
dans le Théorème 3.1 de la version anglaise.

La démonstration complète de ces résultats, ainsi que leur généralisation à un domain Ω de dimension quelconque,
se trouve dans [4].

1. Preliminaries

The notations M
q×� and M

� respectively designate the set of all matrices with q rows and � columns and the set of
all square matrices of order �. A generic point in R

3 is denoted x = (xi) and partial derivatives are denoted ∂i = ∂
∂xi

.

An open ball with radius R centered at x ∈ R
3 is denoted BR(x), or BR if its center is irrelevant in the subsequent

analysis. The complement of a set Ω ⊂ R
3 is denoted by Ωc := R

3 \ Ω .
The space of distributions over an open set Ω ⊂ R

3 is denoted D′(Ω). The usual Sobolev spaces being denoted
Wm,p(Ω), we let

W
m,p

loc (Ω) := {
f ∈ D′(Ω);f ∈ Wm,p(U) for all open set U � Ω

}
,

where the notation U � Ω means that the closure of U in R
3 is a compact subset of Ω . If p > 3, the classes of

functions in W
1,p

loc (Ω) are identified with their continuous representatives, as in the Sobolev embedding theorem (see,
e.g., Adams [1]). For matrix-valued and vector-valued function spaces, we shall use the notations Wm,p(Ω;M

q×�),
Wm,p(Ω;R

�), etc.
Detailed proofs of the results announced in this Note, together with their generalization to domains of arbitrary

dimension, are given in [4].

2. Stability of solutions to Pfaff systems

We recall the following stability result, first established in [3], which shows that small perturbations in the Lp-norm
of the coefficients of the Pfaff system and of its “initial data” induce small perturbations of its solution (in the Fréchet
space W

1,p

loc ):

Theorem 2.1. Let Ω be a connected open subset of R
3, let p > 3, and let there be given sequences of matrix fields

An
i ∈ Lp(Ω;M

�) and Yn ∈ W
1,p

loc (Ω;M
q×�) that satisfy the Pfaff systems

∂iY
n = YnAn

i in Ω

in the distributional sense. Fix a point x0 ∈ Ω and assume that the sequence (
∑

i ‖An
i ‖Lp(Ω) +‖Yn(x0)‖) is bounded

from above by a constant M . Then, for any open set K � Ω , there exist a constant C > 0 (depending on M) such that,
for all n,m ∈ N,∥∥Yn − Ym

∥∥
W 1,p(K)

� C

{∑
i

∥∥An
i − Am

i

∥∥
Lp(Ω)

+ ∥∥Yn
(
x0) − Ym

(
x0)∥∥}

.

An immediate consequence of Theorem 2.1 is the following uniqueness result:

Corollary 2.2. Let Ω be a connected open subset of R
3, let p > 3, and let there be given matrix fields Ai ∈

L
p

loc(Ω;M
�) and Y, Ỹ ∈ W

1,p

loc (Ω;M
q×�) that satisfy the relations

∂iY = YAi and ∂i Ỹ = ỸAi in D′(Ω;M
q×�

)
.

Assume that there exists a point x0 ∈ Ω such that Y(x0) = Ỹ (x0). Then Y(x) = Ỹ (x) for all x ∈ Ω .

3. Approximation of the Pfaff system

We show in this section that a Pfaff system with L
p

loc-coefficients can be approximated, in a sense specified in
Theorem 3.1, with Pfaff systems with smooth coefficients. The main difficulty in establishing such a result is that the
coefficients of the approximating Pfaff system must preserve the compatibility conditions, which are nonlinear.
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Theorem 3.1. Let Ω be an open subset of R
3 and let Ai ∈ Lp(Ω;M

�), p > 3, be matrix fields that satisfy the relations

∂jAi − ∂iAj = AiAj − AjAi for all i < j

in the space of distributions D′(Ω;M
�).

Then there exists a number R0 = R0(p, �,‖Ai‖Lp(Ω)) with the following property: For any open cube ω � Ω

whose edges have lengths < R0, there exist sequences of matrix fields (Aε
i )ε∈N in C∞(ω;M

�) ∩ Lp(ω;M
�) that

satisfy the relations

∂jA
ε
i − ∂iA

ε
j = Aε

i A
ε
j − Aε

jA
ε
i in ω for all i < j,

Aε
i → Ai in Lp

(
ω;M

�
)

as ε → ∞.

Proof. The idea is to decompose the coefficients A := (Ai) :ω → (M�)3 into two parts,

A = CurlX + ∇φ,

where φ :ω → M
� is a vector field not subjected to any constraints, while X = (Xi) :ω → (M�)3 is uniquely deter-

mined by φ and the compatibility conditions satisfied by the coefficients Ai . Hereinafter, the gradient operator, the
Curl operator, and the exterior product ∧ are defined by

∇φ := (∂1φ, ∂2φ, ∂3φ),

CurlX := (∂2X3 − ∂3X2, ∂3X1 − ∂1X3, ∂1X2 − ∂2X1),

A ∧ B := (A2B3 − A3B2,A3B1 − A1B3,A1B2 − A2B1).

Then the approximation of A will be defined by mollifying φ with a convolution kernel, then by defining the approxi-
mation of X as the solution of a nonlinear problem that is related to the compatibility conditions that must be satisfied
by the approximating coefficients. The proof is broken into several steps:

(i) Decomposition of the coefficients. Let there be given a cube ω satisfying the assumptions of the theorem and let
φ and X := (Xi) be defined such that

A = CurlX + ∇φ

and such that

divX = 0 in ω, Xτ = ∂νXν = 0 on ∂ω,

where ν is the outward-pointing unit normal to ∂ω, and where Xν and Xτ are respectively the normal and tangent
components of X defined by

Xν := (X · ν)ν = (
νi(ν1X1 + ν2X2 + ν3X3)

)
and Xτ := X − Xν.

Since ω is a cube, say ω := (a1, b1) × (a2, b2) × (a3, b3), these components are in fact the vector fields

Xν = (0,0,X3) and Xτ = (X1,X2,0) on (a1, b1) × (a2, b2) × {a3, b3},
and the boundary conditions on (a1, b1) × (a2, b2) × {a3, b3} for instance read

X1 = X2 = ∂3X3 = 0.

Note that the above equalities imply that ∂1X1 = ∂2X2 = ∂3X3 = 0 on (a1, b1)×(a2, b2)×{a3, b3}. Therefore divX =
0 on ∂Ω .

That such a decomposition exists is proved as follows: First, the problem


X = A ∧ A,

Xτ = ∂νXν = 0 on ∂ω,

has a unique solution in H 1(ω, (M�)3) (note that since p > 3, A ∧ A ∈ Lp/2(ω, (M�)3) ⊂ H−1(ω, (M�)3)) since
it is a Laplace problem with mixed boundary conditions (the unknown X1 satisfies Dirichlet boundary conditions
on [(a1, b1) × (a2, b2) × {a3, b3}] ∪ [(a1, b1) × {a2, b2} × (a3, b3)] and Neumann boundary conditions on {a1, b1} ×
(a2, b2) × (a3, b3), the unknowns X2 and X3 satisfy similar conditions on ∂ω). Note that Xi ∈ W 2,p/2(ω;M

�) ⊂
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W 1,p(ω;M
�) by the regularizing effect of the Laplace equation and by the Sobolev embeddings (we use here the

assumption p > 3). Since divX satisfies the system


(divX) = div(A ∧ A) = div(−CurlA) = 0 in ω,

divX = 0 on ∂ω,

we must have divX = 0 in ω. It turn, this implies that Curl CurlX = −A ∧ A, since the formula Curl CurlY =
−
Y + ∇(divY) holds for all matrix field Y = (Yi). Hence

Curl(CurlX − A) = Curl CurlX + A ∧ A = 0,

which in turn implies that there exists a field φ ∈ W 1,p(ω;M
�) such that CurlX − A = ∇φ. This shows that the

desired decomposition of A can indeed be achieved.
(ii) Approximation of φ and X. It suffices to mollify φ by convolution, i.e., φε = φ ∗ ρε with (ρε) a sequence of

mollifiers, then to define Xε ∈ W 2,p/2(ω;M
�) as the solution, given by the inverse function theorem (the assumptions

of this theorem are indeed satisfied), to the nonlinear system


Xε = (
CurlXε + ∇φε

) ∧ (
CurlXε + ∇φε

)
in D′(ω; (M�

)3)
,

Xε
τ = ∂νX

ε
ν = 0 on ∂ω.

Assume for a moment that we have proved that the solution to this system satisfies divXε = 0 in ω. This implies that
Curl CurlXε = −
Xε , so that the previous system shows that

Curl CurlXε = −(
CurlXε + ∇φε

) ∧ (
CurlXε + ∇φε

)
in ω,

which in turn implies that

Curl
(
CurlXε + ∇φε

) = −(
CurlXε + ∇φε

) ∧ (
CurlXε + ∇φε

)
in ω.

We now prove that divXε = 0 in ω. First, the boundary conditions satisfied by Xε imply that divXε = 0 on the
boundary ∂ω. Second, divXε satisfies the equation



(
divXε

) = div
((

CurlXε + ∇φε
) ∧ (

CurlXε + ∇φε
))

in ω.

The key formula here is

div(Y ∧ Z) = (CurlY) · Z − Y · (CurlZ)

for all fields Y = (Yi) and Z = (Zi) in H 1(ω; (M�)3) (here P · Q := ∑
i PiQi for P,Q : Ω → (M�)3). With the

notation Aε := CurlXε + ∇φε, it implies that

div
((

CurlXε + ∇φε
) ∧ (

CurlXε + ∇φε
))

= Curl CurlXε · Aε − Aε · Curl CurlXε

= (−
Xε + ∇(
divXε

)) · Aε − Aε · (−
Xε + ∇(
divXε

))
= −(

Aε ∧ Aε
) · Aε + ∇(

divXε
) · Aε + Aε · (Aε ∧ Aε

) − Aε · ∇(
divXε

)
.

Since (Aε ∧ Aε) · Aε = Aε · (Aε ∧ Aε), we deduce from the previous formulas that



(
divXε

) = ∇(
divXε

) · Aε − Aε · ∇(
divXε

)
in ω,

divXε = 0 on ∂ω.

If the cube ω is small enough, this implies that divXε = 0 by using the energy estimate associated with the above
system combined with the convergence Aε → A in Lp(ω) (see the next step).

(iii) Approximation of A. Let Aε = CurlXε + ∇φε in ω. Then Aε → A in Lp(ω), since φε → φ in W 1,p(ω) and
Xε → X in W 2,p/2(ω; (M�)3) (by the inverse function theorem) and, a fortiori, in W 1,p(ω; (M�)3) (by the Sobolev
embeddings). That CurlXε belongs to C∞(ω; (M�)3) is a consequence, by a bootstrap argument, of the interior
regularity of the Laplacian. �
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4. Existence and uniqueness of solutions

The main result of this Note is the following existence and uniqueness result for the Cauchy problem associated
with a Pfaff system with L

p

loc-coefficients:

Theorem 4.1. Let Ω ⊂ R
3 be a connected and simply connected open set, let x0 ∈ Ω , and let Y 0 ∈ M

q×�. Let there
be given three matrix fields Ai ∈ L

p

loc(Ω;M
�), p > 3, satisfying the relations

∂jAi − ∂iAj = AiAj − AjAi for all i < j,

in the space of distributions D′(Ω;M
�). Then the Cauchy problem

∂iY = YAi in D′(Ω;M
q×�

)
,

Y
(
x0

) = Y 0,
(2)

has one and only one solution Y ∈ W
1,p

loc (Ω;M
q×�).

Proof. We first prove the following local existence result: Let Ω̃ � Ω . Then for each open ball Br := Br(y
0) � Ω̃

whose radius satisfies r < min( 1
3 dist(y0, Ω̃c),

R0
2 ), where R0 = R0(Ω̃) is the number defined in Theorem 3.1, there

exists a field Y ∈ W 1,p(Br ;M
q×�) that satisfies the Pfaff system

∂iY = YAi in D′(Br ;M
q×�

)
,

Y
(
y0

) = Z0,
(3)

where Z0 is an arbitrary matrix in M
q×�. We find this solution as a limit of solutions to a sequence of Pfaff systems

with smooth coefficients.
Note that the assumption on the radius of the ball Br(x0) implies that B3r (y

0) � Ω̃ . It is then possible to choose
R such that r < R < R0/2 and B3R(y0) � Ω̃ . Since the open cube ω2R centered at y0 with edges of length 2R

is contained in B3R(y0) � Ω̃ , Theorem 3.1 shows that there exist sequences of matrix fields An
i ∈ C∞(ω2R;M

�) ∩
Lp(ω2R;M

�) that satisfy

∂jA
n
i − ∂iA

n
j = An

i A
n
j − An

jA
n
i in ω2R,

An
i → Ai in Lp

(
ω2R;M

�
)

as n → ∞.

Since the coefficients An
i are smooth, the classical result on Pfaff systems (see, e.g., Thomas [5]) shows that there

exists a matrix field Yn ∈ C∞(ω2R;M
q×�) that satisfies

∂iY
n = YnAn

i in ω2R,

Y n
(
y0

) = Z0.
(4)

By the stability result of Theorem 2.1, there exists a constant C > 0 such that∥∥Yn − Ym
∥∥

W 1,p(Br )
� C

∑
i

∥∥An
i − Am

i

∥∥
Lp(ω2R)

,

which means that (Y n) is a Cauchy sequence in the space W 1,p(Br ;M
q×�). Since this space is complete, there exists

a field Y ∈ W 1,p(Br ;M
q×�) such that

Yn → Y in W 1,p
(
Br ;M

q×�
)

as n → ∞.

In addition, the Sobolev continuous embedding W 1,p(Br ;M
q×�) ⊂ C0(Br ;M

q×�) shows that Yn(y0) → Y(y0) in
M

q×� as n → ∞. By passing to the limit n → ∞ in the equations of the system (4), we deduce that the field Y

satisfies the Pfaff system (3).
Finally, we define a global solution to the Pfaff system (2) as in the proof of Theorem 3.1 of [2], by glueing

together some sequences of local solutions along curves starting from the given point x0. We prove that this definition
is unambiguous thanks to the uniqueness result of Corollary 2.2 and to the simply-connectedness of the set Ω . That
this solution is unique follows from Corollary 2.2. �
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Remark 1. The minimal value of p for which the Cauchy problem (2) with coefficients Ai ∈ L
p

loc(Ω;M
�) is well

posed in the distributional sense is p > 3. Otherwise, the initial condition does not make sense because the value of Y

at x0 cannot be defined since the solution need not be continuous. Moreover, a simple example in the scalar case (i.e.,
when Ai and Y are usual functions) shows that the Pfaff system alone (without the initial condition at x0) need not
have a solution in the distributional sense if p < 3.
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