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Abstract

We identify the extremes of the mass distribution associated with a trivariate quasi-copula and compare our findings with the
bivariate case. To cite this article: B. De Baets et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Extrêmes de la distribution de masse associée à une quasi-copula dans un espace tridimensionnel. Nous identifions les
extrêmes de la distribution de masse associée à une quasi-copula dans un espace tridimensionnel. Les résultats sont comparés à
ceux obtenus dans le cas bidimensionnel. Pour citer cet article : B. De Baets et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Alsina et al. [1] introduced the notion of a quasi-copula in order to characterize operations on distribution functions
that can, or cannot, be derived from operations on random variables defined on the same probability space. Cuculescu
and Theodorescu [3] characterize a multivariate quasi-copula – or n-quasi-copula, with n � 2 a natural number – as a
function Q : [0,1]n → [0,1] that satisfies:

(i) boundary conditions: Q(u1, . . . , ui−1,0, ui+1, . . . , un) = 0 and Q(1, . . . ,1, ui,1, . . . ,1) = ui , for any (u1, . . . ,

un) ∈ [0,1]n;
(ii) monotonicity: Q is increasing in each variable;

(iii) Lipschitz condition: |Q(u1, . . . , un) − Q(v1, . . . , vn)| � ∑n
i=1 |ui − vi |, for any (u1, . . . , un) and (v1, . . . , vn) in

[0,1]n.
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Every n-quasi-copula Q satisfies the following inequalities:

Wn(u1, . . . , un) = max

(
n∑

i=1

ui − n + 1,0

)
� Q(u1, . . . , un) � min(u1, . . . , un).

W 2 is a 2-copula – a stronger concept than that of a quasi-copula [5] – and Wn, n � 3, is a proper n-quasi-copula, i.e.
an n-quasi-copula but not an n-copula.

Consider an n-quasi-copula Q and an n-box B = [a1, b1]× · · · × [an, bn] in [0,1]n. The Q-volume of B is defined
as

VQ(B) =
∑

sgn(c1, . . . , cn)Q(c1, . . . , cn),

where the sum is taken over all the vertices (c1, . . . , cn) of B — i.e., each ck is equal to either ak or bk — and
sgn(c1, . . . , cn) is 1 if ck = ak for an even number of k′s, and −1 if ck = ak for an odd number of k′s. We refer to VQ

as the mass distribution associated with Q (on n-boxes), and to VQ(B) as the mass accumulated by Q on B .
In view of its usefulness for illustrating the differences between copulas and quasi-copulas, the mass distribution is

a popular object of investigation [4,6]. In this respect, the extremes of this mass distribution are of particular interest.
In case n = 2, the main result is that there exists a unique 2-box on which the minimal mass (which turns out to
be −1/3) can be accumulated, as well as a unique 2-box (the unit square itself) on which the maximal mass 1 can
be accumulated. In order to gain further insight into the difference between n-copulas and n-quasi-copulas, the case
n = 3 seems to be a crucial step, as it involves an interplay between the bivariate and the trivariate case (see e.g.
the compatibility problem in [5]). Unfortunately, the extremes of the mass distribution of a 3-quasi-copula have not
yet been identified, mainly due to the seemingly complex nature of this optimization problem. The main message of
this contribution is that by formulating this optimization problem as a linear programming problem, we can rely on
powerful linear optimization tools to tackle it. It is to some extent unexpected that as in the bivariate case, there still
exists a unique 3-box on which the minimal mass (which now turns out to be −4/5) can be accumulated, while there
exist multiple 3-boxes on which the maximal mass 1 can be accumulated. In principle, the methodology exposed here
can be applied to the case n > 3 as well. Apart from an increasing complexity of the formulation, however, no further
surprises are to be expected.

2. The mass distribution associated with a 3-quasi-copula

It is known that for any 2-quasi-copula Q and any 2-box B in [0,1]2, it holds that −1/3 � VQ(B) � 1. Further-
more, VQ(B) = 1 if, and only if, B = [0,1]2; and VQ(B) = −1/3 implies that B = [1/3,2/3]2 [6]. We now aim at
finding the corresponding results for 3-quasi-copulas.

2.1. Minimal mass

Theorem 2.1. Consider a 3-quasi-copula Q and a 3-box B in [0,1]3. It holds that −4/5 � VQ(B), and VQ(B) =
−4/5 implies that B = [2/5,4/5]3.

Proof. Let B = [a1, b1] × [a2, b2] × [a3, b3]. We define the length of the edges of B as λ = b1 − a1, μ = b2 − a2,
ν = b3 − a3, and write the value of Q at the vertices of B as s = Q(a1, a2, a3), s + α = Q(b1, a2, a3), s + β =
Q(a1, b2, a3), s + γ = Q(a1, a2, b3), s + δ = Q(b1, b2, a3), s + ε = Q(b1, a2, b3), s + η = Q(a1, b2, b3) and s + ζ =
Q(b1, b2, b3). We choose a1, a2, a3, λ,μ, ν, s,α,β, γ, δ, ε, η, ζ as fundamental parameters. All of them, as well as
a1 + λ, a2 + μ and a3 + ν must lie in [0,1]. Since Q is increasing and 1-Lipschitz, it must hold that

0 � α � λ � 1 − a1 � 1, 0 � β � μ � 1 − a2 � 1, 0 � γ � ν � 1 − a3 � 1, (1)

and

max(α,β) � δ � min(α + μ,β + λ),

max(α, γ ) � ε � min(α + ν, γ + λ),

max(β, γ ) � η � min(β + ν, γ + μ),

max(δ, ε, η) � ζ � min(δ + ν, ε + μ,η + λ). (2)
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Moreover, in each of the eight vertices (x, y, z) of B , Q is bounded from below by max(x + y + z − 2,0) and from
above by min(x, y, z), i.e.

a1 + a2 + a3 − 2 � s � min(a1, a2, a3),

a1 + a2 + a3 + λ − 2 � s + α � min(a1 + λ,a2, a3),

a1 + a2 + a3 + μ − 2 � s + β � min(a1, a2 + μ,a3),

a1 + a2 + a3 + ν − 2 � s + γ � min(a1, a2, a3 + ν),

a1 + a2 + a3 + λ + μ − 2 � s + δ � min(a1 + λ,a2 + μ,a3),

a1 + a2 + a3 + λ + ν − 2 � s + ε � min(a1 + λ,a2, a3 + ν),

a1 + a2 + a3 + μ + ν − 2 � s + η � min(a1, a2 + μ,a3 + ν),

a1 + a2 + a3 + λ + μ + ν − 2 � s + ζ � min(a1 + λ,a2 + μ,a3 + ν). (3)

Finally, the mass accumulated by Q on B is given by

VQ(B) = ζ − (δ + ε + η) + (α + β + γ ). (4)

We now look for those 3-boxes B that minimize VQ(B). Regarding (4) as a linear objective function of the fundamen-
tal parameters and the conditions (1), (2) and (3) as linear inequality constraints, the problem of minimizing VQ(B) is
a linear programming problem. It can be solved, for instance, by means of the simplex method which is implemented
in most optimization software packages [2]. The problem of minimizing VQ(B) subject to the constraints (1)–(3) has
the unique solution announced. �

As far as the box on which minimal (negative) mass can be accumulated, the symmetry observed in the bivariate
case is no longer present in the trivariate case. Note that the 3-box [2/5,4/5]3 is still symmetrical w.r.t. the main
diagonal. We now provide an example of a 3-quasi-copula Q for which it effectively holds that VQ([2/5,4/5]3) =
−4/5.

Example 1. Since for the unique solution of Theorem 2.1 it holds that s = α = β = γ = 0 and δ = ε = η = ζ = 2/5,
we can define a suitable Q by distributing mass uniformly on [0,1]3 in the following manner: 2/5 of (positive) mass
on the 3-boxes [2/5,4/5]2 × [0,2/5], [0,2/5] × [2/5,4/5]2 and [2/5,4/5] × [0,2/5] × [2/5,4/5]; 1/5 of (positive)
mass on the 3-boxes [2/5,4/5] × [4/5,1] × [2/5,4/5], [4/5,1] × [2/5,4/5]2 and [2/5,4/5]2 × [4/5,1]; −4/5 of
(negative) mass on the 3-box [2/5,4/5]3; and 0 on the remaining 3-boxes.

2.2. Maximal mass

By maximizing the objective function VQ(B), or, equivalently, minimizing −VQ(B), subject to the same boundary
conditions (1)–(3) as before, we are able, by means of the simplex method, for instance, to characterize all 3-boxes
on which maximal mass can be accumulated. This linear programming problem has infinitely many solutions with
maximal mass 1. In contrast to the bivariate case there is no longer a unique 3-box on which the total mass can be
accumulated.

Theorem 2.2. Consider a 3-quasi-copula Q and a 3-box B in [0,1]3. It holds that VQ(B) � 1 and VQ(B) = 1 implies
that B = [a,1]3, with a ∈ [0,1/2].

Example 2. We can define a 3-quasi-copula Q by distributing mass uniformly on [0,1]3 in the following manner:
1 of (positive) mass on the 3-box [1/2,1]3; 1/2 of (positive) mass on the 3-boxes [0,1/2]2 × [1/2,1], [0,1/2] ×
[1/2,1] × [0,1/2] and [1/2,1] × [0,1/2]2; 0 on the 3-box [0,1/2]3; and −1/2 of (negative) mass on each of the
remaining 3-boxes.
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2.3. Boxes that have one face or edge on the boundary of the unit cube

In the bivariate case, the mass accumulated on 2-boxes that have one edge on the boundary of the unit square is
always positive. We therefore wonder about the minimal mass that can be accumulated on 3-boxes that have one face
on the boundary of the unit cube – i.e. at least one of a1, a2, a3 is 0, or one of b1, b2, b3 is 1 – or that have one edge on
the boundary of the unit cube – i.e. at least two of a1, a2, a3 are 0, or two of b1, b2, b3 are 1. In each case, the problem
of minimizing VQ(B) can be formulated as a linear programming problem and can be solved by standard methods.
The cases not mentioned explicitly in the following theorem can be obtained by invoking symmetry arguments:

Theorem 2.3. Consider a 3-quasi-copula Q. If B is a 3-box in [0,1]3 of the type

(i) B0 = [0, b1] × [a2, b2] × [a3, b3], then VQ(B0) � −1/2 and VQ(B0) = −1/2 implies that B0 = [0,1/2] ×
[1/2,1] × [1/2,1];

(ii) B00 = [0, b1] × [0, b2] × [a3, b3], then VQ(B00) � 0 and VQ(B00) = 0 implies that B00 = [0, b1] × [0, b2] ×
[a3, b3] with b1 + b2 + b3 − a3 � 2;

(iii) B1 = [a1,1] × [a2, b2] × [a3, b3], then VQ(B1) � −2/3 and VQ(B1) = −2/3 implies that B1 = [a,1] ×
[1/3,2/3] × [1/3,2/3] with a ∈ [1/3,2/3];

(iv) B11 = [a1,1] × [a2,1] × [a3, b3], then VQ(B11) � −1/2 and VQ(B11) = −1/2 implies that B11 = [1/2,1] ×
[1/2,1] × [a, a + 1/2] with a ∈ [0,1/2].
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