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Abstract

In this Note we develop the fractional space technique in the local operator space framework. As the main result we present the
noncommutative Albrecht–Vasilescu extension theorem, which in turn solves the quantized moment problem. To cite this article:
A. Dosiev, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur le problème du moment quantifié. Dans cette Note nous développons la technique des espaces fractionnaires dans le cadre
d’espaces d’opérateurs locaux. Le résultat principal est une variante du théorème non commutatif d’Albrecht–Vasilescu sur les
extensions, lequel implique une solution du problème du moment quantifié. Pour citer cet article : A. Dosiev, C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

This Note is devoted to a quantized moment problem within the local operator space framework [7,2]. Recall that
the operator moment problem [4] is to finding a positive operator-valued measure which express an integral represen-
tation for the given unital linear mapping from the algebra of all complex-valued polynomials in several real variables
into the space of all sesquilinear forms on a pre-Hilbert space. Involving the fractional space technique [1,5,6], the
operator moment problem has been solved in [1]. In the present work we propose a quantization of the fractional space
construction in terms of local operator systems [2]. We replace the complex-valued polynomial functions in several
real variables by the elements of a local operator algebra generated by a several symmetric unbounded operators on
a Hilbert space, and prove that each local operator algebra is a fractional subspace of the multinormed C∗-algebra
CE (D) of all noncommutative continuous functions on a quantized domain D with an exhaustion E . Such quantiza-
tion inherits a quantized version of the operator moment problem. Based upon the Arveson–Hahn–Banach–Wittstock
theorem and the fractional space technique, we derive the existence of a quantized measure that would lead to a
solution of the quantized moment problem.

1. Local operator algebras

Let E ={Hα}α∈Λ be an upward filtered family of closed subspaces in a Hilbert space H such that their union
D = ⋃

E is a dense subspace in H . We say that D is a quantized domain with the exhaustion E . Thus we give a
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net p ={Pα: α ∈ Λ} of orthoprojections (onto Hα , respectively) in B(H), such that limp = 1H (SOT). The set of
all unbounded operators on H is denoted by L(H). By an algebra of all noncommutative continuous functions on
a quantized domain D with an exhaustion E , we mean the set: CE (D) = {T ∈ L(H): dom(T ) = D, T Pα = PαT ∈
B(H),α ∈ Λ}. If Mk(CE (D)) is the space of all k × k-matrices over CE (D), then Mk(CE (D)) = CEk (Dk), where
Ek = {Hk

α }α∈Λ (see [2]). For a matrix T ∈ Mk(CE (D)) we set ‖T ‖(k)
α = ‖T |Hk

α‖, α ∈ Λ. The family {‖ · ‖(k)
α : k ∈ N}

is a matrix seminorm [3] on CE (D). Therefore CE (D), in particular each its subspace V , turns out to be a local
operator space [3]. We say that V is a concrete local operator space on H with support D [2]. Confirm also that
CE (D) is a multinormed C∗-algebra with the defining family of seminorms ‖ · ‖(1)

α , α ∈ Λ. Further, each T ∈ V

has an unbounded dual T ∗ such that D ⊆ dom(T ∗) and T ∗Pα = PαT ∗ ∈ B(Hα) for all α. We set T ∗ = T ∗|D and
V ∗ = {T ∗: T ∈ V } ⊆ CE (D). A (concrete) local operator space V ⊆ L(H) is called a local operator system on H

(see [2]) if V = V ∗ and ID ∈ V . A local operator system V is said to be a local operator algebra on H with support
D if V is a local operator system closed with respect to the multiplication, that is, T S ∈ V whenever T ,S ∈ V . An
element T ∈ V of a local operator system V is said to be locally positive [2] if T |Hα � 0 in B(Hα) for a certain
α ∈ Λ. In this case we write T �α 0. We also write T =α 0 if T |Hα = 0. Note that CE (H) = {T ∈ B(H): T (Hα) ⊆
Hα,T ∗(Hα) ⊆ Hα,α ∈ Λ} is a locally bounded (see [2]) operator space on H with support H . Confirm that CE (H)

is a multinormed ∗-algebra with the defining seminorm family {‖ · ‖(1)
α : α ∈ Λ}, whose completion C̃E (H) is a

multinormed C∗-algebra. Actually, CE (H) is a unital C∗-algebra too, associated to the ‘dominating’ norm from
B(H). The restriction mapping CE (H) → CE (D), T �→ T |D, implements a ∗-isometric embedding, which allows to

identify the algebra C̃E (H) with a ∗-subalgebra in CE (D).
We introduce a set of all denominators ME = {m ∈ CE (H): m = m∗, (m|Hα)−1 ∈ B(Hα),α ∈ Λ} in the C∗-

algebra CE (H). In particular, m|D :D → D is a bijection and we have a noncommutative continuous function
T (m|D)−1 ∈ CE (D) whenever T ∈ CE (H), m ∈ ME . We set CE (H)/m = {T/m: T ∈ CE (H)} ⊆ CE (D), which
is a unital local operator space on H with support D. We say that CE (H)/m is a fractional space with the de-
nominator m. Put n � m for n,m ∈ ME , if n−1m is bounded. One can easily verify that CE (H)/n ⊆ CE (H)/m

whenever n � m. Let M ⊆ ME be a unital subset of denominators, that is, 1H ∈ M . A subset M0 ⊆ M is said
to be a cofinal if for each n ∈ M there corresponds m ∈ M0 such that n � m. Suppose Fm ⊆ CE (H)/m is a sub-
space for each m ∈ M . An algebraic sum FM = ∑

m∈M Fm of these subspaces is said to be a fractional subspace if
1H /n ∈ Fn ⊆ Fm whenever n � m, n,m ∈ M . Note that FM = ∑

m∈M0
Fm = FM0 for each cofinal subset M0 ⊆ M .

The sum CE (H)/M = ∑
m∈M CE (H)/m is an example of a fractional subspace. One may replace CE (H) with its uni-

tal C∗-subalgebra JM containing all n−1m, n � m, n,m ∈ M . We say that JM is a C∗-algebra in CE (H) related to M .

Theorem 1. Let D be a quantized domain in a Hilbert space H with an exhaustion E . Then,

CE (D) = C̃E (H) = CE (H)/ME .

Moreover, if V ⊆ L(H) is a local operator system on H with support D, then V is a fractional subspace in CE (D)

whenever T ∗T ∈ V for each T ∈ V . In particular, each local operator algebra is a fractional space.

Note that Mk(CE (H)/m) = CEk (Hk)/(m⊗1Hk ) ⊆ CEk (Dk) = CEk (Hk)/MEk by Theorem 1. If b ∈ Mk(CE (H)/

m) then we put ‖b‖(k)
m,α = ‖(b(m ⊗ 1Hk ))|Hk

α‖B(Hk
α ). The family qm,α = {‖ · ‖(k)

m,α: k ∈ N} is a matrix seminorm on
CE (H)/m for all α ∈ Λ. The fractional space CE (H)/m furnished with the matrix seminorms {qm,α: α ∈ Λ} turns
out to be a locally bounded operator space [2]. Let M ⊆ ME be a unital subset of denominators. One may put on
CE (H)/M the inductive local operator topology [3, Section 8] such that all inclusions CE (H)/m → CE (H)/M ,
m ∈ M , are matrix continuous, where each fraction space CE (H)/m is a locally bounded operator space. We say that
this is a fractional matrix topology on CE (H)/M .

2. The fractional positivity

Let M ⊆ ME be a nonempty subset of denominators with its fixed cofinal subset M0, and let JM be a unital
C∗-algebra in CE (H) related to M . Consider a fractional subspace FM ⊆ JM/M . Take α ∈ Λ, m ∈ M0. Let
(Fm)M0,α,+ be a subset in Fm of those b which can be written as a finite sum b = ∑k

i=1 bi of elements bi ∈ Fni

such that bini �α 0 in JM for some ni ∈ M0, ni � m, 1 � i � k. We write b �α 0 in Fm. In particular, T/m �α 0
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in Fm whenever T �α 0 in JM . Put (FM0)α,+ = ∑
m∈M0

(Fm)M0,α,+, which is a cone in FM of all M0-fractionally

α-positive elements. If k ∈ N, then we have a cone (Mk(JM)/Mk
0 )α,+ = ∑

m∈M0
(Mk(JM)/(m ⊗ 1Hk ))Mk

0 ,α,+ of

Mk
0 -fractionally α-positive elements in Mk(JM/M), where Mk

0 = {m ⊗ 1Hk : m ∈ M0}.

3. The inner product mapping

Let Δ be a pre-Hilbert space with its inner product (x, y) �→ 〈x, y〉, x, y ∈ Δ, and let SF(Δ) be a space
of all sesquilinear forms on Δ. Consider a unital subset M ⊆ ME and fix its unital cofinal subset M0. Let
FM ⊆ JM/M be a fractional subspace. A linear mapping ϕ :FM → SF(Δ) is said to be an inner product map-
ping if it is unital (ϕ(1H /1H )(x, y) = 〈x, y〉, x, y ∈ Δ) and ϕ(1H /m)(x, x) > 0, x ∈ Δ\{0}, m ∈ M0. Thus
ϕ(1H /m) is an inner product on Δ and ‖x‖m = (ϕ(1H /m)(x, x))1/2, x ∈ Δ, is a norm on Δ. Let us introduce
a subspace SFm(Δ) = {θ ∈ SF(Δ): ‖θ‖m < ∞}, where ‖θ‖m = sup{|θ(x, y)|: ‖x‖m � 1,‖y‖m � 1}, m ∈ M0.
We set SFM0(Δ) = ∑

m∈M0
SFm(Δ). Since Mk(SF (Δ)) ⊆ SF(Δk), k ∈ N, each ‖ · ‖m defines a matrix gauge

‖ · ‖(k)
m = ‖ · ‖m⊗1

Hk
, k ∈ N, on SF(Δ). Therefore SFm(Δ) is an operator space. In particular, SFM0(Δ) is a local

operator space with the inductive matrix topology.
Let ϕ :FM → SFM0(Δ) be an inner-product mapping, ϕm = ϕ|Fm

, ϕm,x :Fm → C, ϕm,x(b) = ϕ(b)(x, x),

x ∈ Δ, and let ϕ
(k)
m : Mk(Fm) → Mk(SFM0(Δ)) be the canonical extension of ϕm, k ∈ N. Put ‖ϕ(k)

m ‖(k)
m,α =

sup{‖ϕ(k)
m (b)‖(k)

m : ‖b‖(k)
m,α � 1} and ‖ϕm‖m,α,cb = sup{‖ϕ(k)

m ‖(k)
m,α: k ∈ N}, α ∈ Λ. We say that ϕ is completely α-

contractive if ‖ϕm‖m,α,cb � 1 for all m ∈ M0. In particular, ϕ(Fm) ⊆ SFm(Δ) for all m ∈ M0.
Now let ϕ :FM → SFM0(Δ) be an inner product mapping. A matrix θ ∈ Mk(SFM0(Δ)) is said to be positive if

θ is positive being an element of SFMk
0
(Δk), that is, θ(x, x) � 0, x ∈ Δk . We say that ϕ is completely α-positive

if each ϕ(k) is locally positive (see [2]) with respect to the cone Mk(FM0)α,+. In particular, ϕm is α-compatible
(ϕm(b) = 0 whenever b =α 0) and ϕm(b)(x, x) � 0, x ∈ Δ, whenever b ∈ (Fm)M0,α,+, m ∈ M0. Finally, we say that a
linear mapping Ψ :JM → B(K) is m-fractionally α-positive if Ψ (T (n−1m)) � 0 in B(K) for all T �α 0 in JM , and
n ∈ M0, n � m. By analogy, Ψ is said to be m-fractionally completely α-positive if each Ψ (k) : Mk(JM) → B(Kk) is
(m⊗ 1Hk )-fractionally α-positive, that is, Ψ (k)(T (n−1m⊗ 1Hk )) � 0 in B(Δk

m) whenever T ∈ Mk(JM), T �α 0, and
n � m, n ∈ M0.

4. The quantized measures

Let JM be a C∗-algebra in CE (H) related to a unital set of denominators M with its fixed unital cofinal subset
M0 ⊆ M . Fix an inner product space Δ whose completion is K . We say that it is defined a quantized B(K)-valued
measure on JM with support in Hα , if we have a unital completely α-positive mapping Ψ :JM → B(K) such that the
α-positive functionals μx,y :JM → C, μx,y(T ) = 〈Ψ (T )x, y〉, have linear extensions μ̃x,y :JM/M → C, x, y ∈ Δ,
such that the mapping Δ × Δ → C, (x, y) �→ μ̃x,y(b), is a sesquilinear form on Δ for each b ∈ JM/M , and the linear
mapping μ :JM/M → SF(Δ), μ(b)(x, y) = μ̃x,y(b), is completely α-positive in the following sense that for each
k ∈ N and x = [xi] ∈ Δk the mapping,

μ[k]
x : Mk(JM/M) −→ Mk2 , μ[k]

x (b) =
⎡
⎣

μ̃
(k)
x1,x1(b) · · · μ̃

(k)
xk,x1(b)

...
...

μ̃
(k)
x1,xk

(b) · · · μ̃
(k)
xk,xk

(b)

⎤
⎦ ,

is locally positive with respect to the cone (Mk(JM)/Mk
0 )α,+. We also set μ̃x = μ̃x,x , x ∈ Δ.

Theorem 2. Assume that Δ = K = C, and Ψ :JM → C is a unital completely α-positive functional. Then Ψ deter-
mines a quantized C-valued measure μ on JM with support in Hα if and only if Ψ extends to a completely α-positive
functional Ψ̃ :JM/M → C.

Roughly speaking, JM/M is a supply of μ-measurable noncommutative functions.
Note that if μ is a quantized B(K)-valued measure on JM with support in Hα then the relevant linear mapping

μ :JM/M → SF(Δ) is a completely α-positive inner product mapping.
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Now let ψ :JM/M → SFM0(Δ) be a completely α-positive inner-product mapping. One can prove that
ψ(T/m)(x, y) = 〈Ψm(T )x, y〉m, x, y ∈ Δ, for the uniquely determined unital m-fractionally completely α-positive
mapping Ψm :JM → B(Δm), m ∈ M0. If K = Δ1H

and Ψ = Ψ1H
, then Ψ :JM → B(K) is a unital completely

α-positive mapping.

Proposition 3. If ψ :JM/M → SFM0(Δ) is a completely α-positive inner-product mapping, then the mapping Ψ =
Ψ1H

:JM → B(K) generates a quantized B(K)-valued measure μ on the C∗-algebra JM with support in Hα.

Let φ :FM → SFM0(Δ) be an inner-product mapping with φm(T /m)(x, y) = 〈Ψm(T )x, y〉m for some linear maps
Ψm :JM → B(Δm), m ∈ M0. We say that φ is a α-admissible mapping for JM/M if each Ψm is m-fractionally
completely α-positive on JM .

Proposition 4. Let FM ⊆ JM/Mbe a fractional subspace such that m/n2 ∈ FM whenever n � m, n,m ∈ M0. If
φ :FM → C is a α-contractive functional such that φ(1/n)2 = φ(1/m)φ(m/n2) for n, m ∈ M0, n � m, then φ is
α-admissible for JM/M .

Theorem 5 (Noncommutative Albrecht–Vasilescu Theorem). Let M ⊆ ME be a subset of denominators in CE (H)

with its unital cofinal subset M0, FM ⊆ JM/M a fractional subspace and let φ :FM → SFM0(Δ) be an inner
product mapping. The map φ extends to a unital completely α-positive mapping ψ :JM/M → SFM0(Δ) such that
‖ψm,x‖m,α = ‖φm,x‖m,α for all m ∈ M0, x ∈ Δ, if and only if φ is α-admissible for JM/M . In particular, φ is com-
pletely α-contractive.

5. The quantized moment problem

Fix a n-tuple S = (S1, . . . , Sn) of mutually commuting symmetric operators in CE (D) and consider the commuta-
tive set S = {Dλ

S : λ ∈ Zn+} of denominators in CE (H), where Dλ
S = D

λ1
S1

· · ·Dλn

Sn
, DSi

= 4(1 + S2)−1, 1 � i � n. The
polynomial ∗-algebra PS generated by S is a fractional subspace in S ′

E/S , where S ′
E is the commutant of S in CE (H).

Consider a unital linear mapping φ :PS → SF(Δ). We say that φ is a Hα-moment form (or local moment form) if
there is a quantized B(K)-valued measure μ on S ′

E with support in Hα such that φ(p(S))(x, x) = μ̃x(p(S)) for all
p(S) ∈PS and x ∈ Δ, where K is the completion of the inner product space Δ. In this case μ is called a representing
measure for φ. Using Theorem 5 and Proposition 3, one may prove the following assertion:

Theorem 6. A unital linear mapping φ :PS → SF(Δ) is a Hα-moment form if and only if φ is a completely α-
contractive inner product mapping.

Similar assertion stated in Theorem 6 for a noncommutative operator family S can be proved using Proposition 4
and Theorem 2 under the restrictive condition.
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