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Abstract

In this Note we deal with the asymptotic behavior as t tends to infinity of solutions for linear parabolic equations whose model
is {

ut − �u = μ in (0, T ) × Ω,

u(0, x) = u0 in Ω,

where μ is a general, possibly singular, Radon measure which does not depend on time, and u0 ∈ L1(Ω). We prove that the duality
solution, which exists and is unique, converges to the duality solution (as introduced by Stampacchia (1965)) of the associated
elliptic problem. To cite this article: F. Petitta, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Comportement asymptotique des solutions des équations paraboliques linéaires avec données de mesures générales. Dans
cette Note nous traitons le comportement asymptotique, quand t tend vers l’infini, des solutions des équations paraboliques linéaires
dont le modéle est :{

ut − �u = μ dans (0, T ) × Ω,

u(0, x) = u0 dans Ω,

oú μ est une mesure de Radon générale, éventuellement singulière, qui ne dépend pas de t , et où u0 ∈ L1(Ω). Nous montrons que
la solution de dualité, qui existe et est unique, converge vers la solution de dualité (introduite par Stampacchia (1965)) du probléme
elliptique associé. Pour citer cet article : F. Petitta, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Un grand nombre d’articles a déjà été consacré à l’étude du comportement asymptotique des solutions de problèmes
paraboliques dans des contextes différents : pour une revue des résultats classiques voir [4,1,11], et les références in-
cluses. Plus récemment, dans [7] et [6], nous avons considéré le cas des opérateurs monotones non-linéaires, et les
problèmes quasi-linéaires avec des termes absorbants ayant une croissance naturelle par rapport au gradient ; en parti-
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culier, dans [7], nous avons considéré des mesures non négatives μ absolument continues par rapport à la p-capacité
parabolique (appelées des mesures diffuses). Ici, nous analysons le cas des opérateurs linéaires avec des mesures
générales, éventuellement singulières, et sans condition de signe sur les données. Soient Ω ⊆ R

N un ensemble ou-
vert borné, N � 2 et T > 0 ; nous dénotons par Q le cylindre (0, T ) × Ω . Nous nous intéressons à l’étude des
propriétés principales et au comportement asymptotique par rapport au temps de la solution du problème parabo-
lique linéaire (1) avec μ ∈ M(Q), l’espace des mesures de Radon à variation totale bornée sur Q, u0 ∈ L1(Ω), et
L(u) = −div(M(x)∇u), où M est une matrice avec éléments bornés, mesurables, et satisfaisant la condition d’ellip-
ticité (2).

Notre résultat principal est le suivant :

Théorème 1. Soit μ ∈ M(Q) indépendant de t . Soit u la solution de dualité du probléme (1) avec u0 ∈ L1(Ω), et
soit v la solution de dualité du problème elliptique associé (3). Alors u(T , x) converge vers v(x) dans L1(Ω) quand
T tend vers à l’infini.

1. Introduction

A large number of papers has been devoted to the study of asymptotic behavior for solutions of parabolic prob-
lems under various assumptions and in different contexts: for a review on classical results see [4,1,11], and references
therein. More recently in [7] and [6] the case of nonlinear monotone operators, and quasilinear problems with non-
linear absorbing terms having natural growth, have been considered; in particular, in [7], we dealt with nonnegative
measures μ absolutely continuous with respect to the parabolic p-capacity (the so called soft measures). Here we
analyze the case of linear operators with possibly singular general measures and no sign assumptions on the data.

Let Ω ⊆ R
N be a bounded open set, N � 2, T > 0; we denote by Q the cylinder (0, T ) × Ω . We are interested in

the study of main properties and in the asymptotic behavior with respect to the time variable t of the solution of the
linear parabolic problem{

ut + L(u) = μ in (0, T ) × Ω,

u(0) = u0 in Ω,

u = 0 on (0, T ) × ∂Ω,

(1)

with μ ∈ M(Q) the space of Radon measures with bounded total variation on Q, u0 ∈ L1(Ω), and

L(u) = −div
(
M(x)∇u

)
,

where M is a matrix with bounded, measurable entries, and satisfying the ellipticity assumption

M(x)ξ · ξ � α|ξ |2, (2)

for any ξ ∈ R
N , with α > 0.

In order to obtain uniqueness, in the elliptic case, the notion of duality solution of Dirichlet problem{−div
(
M(x)∇v

) = μ in Ω,

v = 0 on ∂Ω,
(3)

was introduced in [12].
Following the idea of [12] we can define a solution of problem (1) in a duality sense as follows:

Definition 1.1. A function u ∈ L1(Q) is a duality solution of problem (1) if

−
∫
Ω

u0w(0)dx +
∫
Q

ug dx dt =
∫
Q

w dμ, (4)

for every g ∈ L∞(Q), where w is the solution of the backward problem⎧⎨
⎩

−wt − div
(
M∗(t, x)∇w

) = g in (0, T ) × Ω,

w(T ,x) = 0 in Ω,

w(t, x) = 0 on (0, T ) × ∂Ω,

(5)

where M∗(t, x) is the transposed matrix of M(t, x).
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Notice that all terms in (4) are well defined thanks to standard parabolic regularity results (see [5]). Moreover, it
is quite easy to check that any duality solution of problem (1) actually turns out to be a distributional solution of the
same problem. Finally recall that any duality solution turns out to coincide with the renormalized solution of the same
problem (see [8]); this notion was introduced in [3] for the elliptic case, and then adapted to the parabolic case in [8].

A unique duality solution for problem (1) exists, in fact we have the following:

Theorem 1.2. Let μ ∈ M(Q) and u0 ∈ L1(Ω), then there exists a unique duality solution of problem (1).

The main result of this Note concerns the asymptotic behavior of the duality solution of problem (1), in the case
where the measure μ do not depend on time.

First observe that by Theorem 1.2 a unique solution is well defined for all t > 0. We recall that by a duality solution
of problem (3) we mean a function v ∈ L1(Ω) such that∫

Ω

v g dx dt =
∫
Ω

zdμ, (6)

for every g ∈ L∞(Ω), where z is the variational solution of the dual problem{−div
(
M∗(x)∇z

) = g in Ω,

z(x) = 0 on ∂Ω.
(7)

As we will see later, a duality solution of problem (1) turns out to be continuous with values in L1(Ω). Let us state
our main result:

Theorem 1.3. Let μ ∈ M(Q) be independent on the variable t . Let u(t, x) be the duality solution of problem (1) with
u0 ∈ L1(Ω), and let v(x) be the duality solution of the corresponding elliptic problem (3). Then

lim
T →+∞u(T , x) = v(x),

in L1(Ω).

2. Existence and uniqueness of the duality solution

Sketch of the proof of Theorem 1.2. We first check the result in the case μ ∈ L1(Q) and u0 smooth; let us
fix r, q ∈ R such that r, q > 1, N

q
+ 2

r
< 2, and let us consider g ∈ Lr(0, T ;Lq(Ω)) ∩ L∞(Q). Let w be the

solution of problem (5); standard parabolic regularity results (see again [5]) imply that w is continuous on Q

and ‖w‖L∞(Q) � C‖g‖Lr(0,T ;Lq(Ω)); therefore, the linear functional Λ :Lr(0, T ;Lq(Ω)) 
→ R, defined by Λ(g) =∫
Q

w dμ + ∫
Ω

u0w(0), is well defined and continuous, since∣∣Λ(g)
∣∣ �

(‖μ‖M(Q) + ‖u0‖L∞(Ω)

)‖w‖L∞(Q) � C‖g‖Lr(0,T ;Lq(Ω)).

So, by Riesz’s representation theorem there exists a unique u ∈ Lr ′
(0, T ;Lq ′

(Ω)) such that

Λ(g) =
∫
Q

ug dx dt,

for any g ∈ Lr(0, T ;Lq(Ω)). So we have that, if μ ∈ L1(Q) and u0 is smooth, then there exists a (unique by con-
struction) duality solution of problem (1).

A standard approximation argument (see for instance Theorem 1.2 in [2]) shows that a unique solution also exists
for problem (1) if μ ∈M(Q) and u0 ∈ L1(Ω). �
3. Asymptotic behavior

In this section we will prove Theorem 1.3. From now on we will denote by Tk(s) the function max(−k, {min(k, s))

and Θk(s) will indicate its primitive function, that is Θk(s) = ∫ s

0 Tk(σ )dσ .
Let us prove the following preliminary result:
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Proposition 3.1. Let μ ∈ M(Q) be independent on time and let v be the duality solution of the elliptic problem (3).
Then v is the unique solution of the parabolic problem (1), with u0 = v, in the duality sense introduced in Defini-
tion 1.1, for any fixed T > 0.

Proof. We have to check that v is a solution of problem (1); to do that let us choose Tk(v) as test function in (5). We
obtain

−
T∫

0

〈
wt,Tk(v)

〉
dt +

∫
Q

M∗(x)∇w · ∇Tk(v)dx dt =
∫
Q

Tk(v) g dx dt.

Now, integrating by parts we have − ∫ T

0 〈wt,Tk(v)〉dt = ∫
Ω

w(0)v(x) + ω(k), where ω(k) denotes a nonnegative
quantity which vanishes as k diverges, while∫

Q

Tk(v) g dx dt =
∫
Q

v g dx dt + ω(k).

Finally, using Theorem 2.33 and Theorem 10.1 of [3], we have

∫
Q

M∗(x)∇w · ∇Tk(v)dx dt =
∫
Q

M(x)∇Tk(v) · ∇w dx dt =
T∫

0

∫
Ω

w dλk(x)dt,

where the λk are measures in M(Ω) which converge to μ in the narrow topology of measures; thus, recalling that w

is bounded continuous, and using the dominated convergence theorem, we have∫
Q

M∗(x)∇w · ∇Tk(v)dx dt =
∫
Q

w dμ + ω(k).

Gathering together all these facts, we have that v is a duality solution of (1) having itself as initial datum.
Proposition 3.1 allows us to deduce that the duality solution of problem (1) u belongs to C(0, T ;L1(Ω)) for any

fixed T > 0; indeed, z = u − v uniquely solves problem (1) with u0 − v as initial datum and μ = 0 in the duality
sense, and so z ∈ C(0, T ;L1(Ω)). This is due to a result of [9], since z turns out to be an entropy solution in the sense
of the definition given in [10].

Therefore, as we said before, for fixed μ and g ∈ L∞(Q) one can uniquely determine u and w, solution of the
above problems, defined for any time T > 0. �

Moreover, let us give the following definition:

Definition 3.2. A function u ∈ L1(Q) is a duality supersolution of problem (1) if∫
Q

ug dx dt �
∫
Q

w dμ +
∫
Ω

u0w(0)dx,

for any bounded g � 0, and w solution of (5), while u is a duality subsolution if −u is a duality supersolution.

By linearity we easily deduce

Lemma 3.3. Let u and u be respectively a duality supersolution and a duality subsolution for problem (1). Then
u � u.

Observe that, if the functions in Lemma 3.3 are continuous with values in L1(Ω), then we actually have that
u(t, x) � u(t, x) for every fixed t , a.e. on Ω .

Proof of Theorem 1.3. We split the proof into a few steps.
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Step 1. Let us first suppose u0 = 0 and μ � 0. If we consider a parameter s > 0 we have that both u(t, x) and
us(t, x) ≡ u(t + s, x) are duality solutions of problem (1) with, respectively, 0 and u(s, x) � 0 as initial datum; so,
from Lemma 3.3 we deduce that u(t + s, x) � u(t, x) for t, s > 0. Therefore u is a monotone nondecreasing function
in t and so it converges to a function ṽ(x) almost everywhere and in L1(Ω) since, thanks to Proposition 3.1 and
Lemma 3.3, u(t, x) � v(x).

Now, recalling that u is obtained as limit of regular solutions with smooth data με , we can define un
ε (t, x) as the

solution of⎧⎪⎨
⎪⎩

(
un

ε

)
t
− div

(
M(x)∇un

ε

) = με in (0,1) × Ω,

un
ε (0, x) = uε(n, x) in Ω,

un
ε = 0 on (0,1) × ∂Ω.

(8)

On the other hand, if g � 0, we define wn(t, x) as⎧⎪⎨
⎪⎩

−wn
t − div

(
M∗(x)∇wn

) = g in (0,1) × Ω,

wn(1, x) = w(n + 1, x) in Ω,

wn = 0 on (0,1) × ∂Ω.

(9)

Recall that, through the change of variable s = T − t , w solves a similar linear parabolic problem, so that if g � 0, by
classical comparison results one has that w(t, x) is decreasing in time. Moreover, by comparison principle, we have
that wn is increasing with respect to n and, again by comparison Lemma 3.3, we have that, for fixed t ∈ (0,1)

wn(1, x) � wn(t, x) = w(n + t, x) � w(n,x) = wn−1(1, x),

and so its limit w̃ does not depend on time and is the solution of elliptic dual problem (7). An analogous argument
shows that also the limit of un does not depend on time. Thus, using un

ε in (9) and wn in (8), integrating by parts,
subtracting, and passing to the limit over ε, we obtain

1∫
0

∫
Ω

ung −
1∫

0

∫
Ω

wn dμ +
∫
Ω

un(0)wn(0)dx −
∫
Ω

un(1)wn(1)dx = 0.

Hence, we can pass to the limit on n using monotone convergence theorem obtaining∫
Ω

ṽg −
∫
Ω

w̃ dμdx = 0, (10)

and so v = ṽ.
If g has no sign we can reason separately with g+ and g− obtaining (10) and then using the linearity of (4) to

conclude.
If v is the duality solution of problem (3), we proved in Proposition 3.1 that v is also the duality solution of the

initial boundary value problem (1) with v itself as initial datum. Therefore, by comparison Lemma 3.3, if 0 � u0 � v,
we have that the solution u(t, x) of (1) converges to v in L1(Ω) as t tends to infinity; in fact, we proved it for the
duality solution with homogeneous initial datum, while v is a nonnegative duality solution with itself as initial datum.

Step 2. Now, let us take uλ(t, x) the solution of problem (1) with u0 = λv as initial datum for some λ > 1 and
again μ � 0. Hence, since λv does not depend on time, we have that it is a duality supersolution of the parabolic
problem (1), and, observing that v is a subsolution of the same problem, we can apply again the comparison lemma
finding that v(x) � uλ(t, x) � λv(x) a.e. in Ω , for all positive t .

Moreover, thanks to the fact that the datum μ does not depend on time, we can apply the comparison result also
between uλ(t + s, x) solution with u0 = uλ(s, x), with s a positive parameter, and uλ(t, x), the solution with u0 = λv

as initial datum; so we obtain uλ(t + s, x) � uλ(t, x) for all t, s > 0, a.e. in Ω . So, by virtue of this monotonicity result
we have that there exists a function v̄ � v such that uλ(t, x) converges to v̄ a.e. in Ω as t tends to infinity. Clearly
v̄ does not depend on t and we can develop the same argument used before to prove that we can pass to the limit in
the approximating duality formulation, and so, by uniqueness, we can obtain that v̄ = v. So, we have proved that the
result holds for the solution starting from u0 = λv as initial datum, with λ > 1 and μ � 0. Since we proved before that
the result holds true also for the solution starting from u0 = 0, then, again applying a comparison argument, we can
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conclude in the same way that the convergence to v holds true for solutions starting from u0 such that 0 � u0 � λv as
initial datum, for fixed λ > 1.

Step 3. Now, let u0 ∈ L1(Ω) a nonnegative function and μ � 0, and recall that, thanks to suitable Harnack inequal-
ity (see [13]), if μ �= 0, then v > 0 (which implies λv tends to +∞ on Ω as λ diverges). Without loss of generality
we can suppose μ �= 0 (the case μ ≡ 0 is the easier one and it can be proved as in [7]); let us define the monotone
nondecreasing (with respect to λ) family of functions u0,λ = min(u0, λv).

As we have shown above, for every fixed λ > 1, uλ(t, x), the duality solution of problem (1) with u0,λ as initial
datum, converges to v a.e. in Ω , as t tends to infinity. Moreover, using again standard compactness arguments, we
also have that Tk(uλ(t, x)) converges to Tk(v) weakly in H 1

0 (Ω) as t diverges, for every fixed k > 0.
So, thanks to Lebesgue theorem, we can easily check that u0,λ converges to u0 in L1(Ω) as λ tends to infin-

ity. Therefore, using a stability result for renormalized solutions of the linear problem (1) (see [8]) we obtain that
Tk(uλ(t, x)) converges to Tk(u(t, x)) strongly in L2(0, T ;H 1

0 (Ω)) as λ tends to infinity.
On the other hand, since zλ = u − uλ solves the problem (1) with u0 − u0,λ as initial datum, then zλ turns out to be

an entropy solution of the same problem and so we have (see [10])∫
Ω

Θk(u − uλ)(t)dx �
∫
Ω

Θk(u0 − u0,λ)dx,

for every k, t > 0. Dividing the above inequality by k, and passing to the limit as k tends to 0 we obtain∥∥u(t, x) − uλ(t, x)
∥∥

L1(Ω)
�

∥∥u0(x) − u0,λ(x)
∥∥

L1(Ω)
, (11)

for every t > 0. Hence, we have ‖u(t, x) − v(x)‖L1(Ω) � ‖u(t, x) − uλ(t, x)‖L1(Ω) + ‖uλ(t, x) − v(x)‖L1(Ω); then,
thanks to the fact that the estimate in (11) is uniform in t , for every fixed ε, we can choose λ̄ large enough such that
‖u(t, x)−uλ̄(t, x)‖L1(Ω) � ε

2 , for every t > 0; on the other hand, thanks to the result proved above, there exists t̄ such
that ‖uλ̄(t, x) − v(x)‖L1(Ω) � ε

2 , for every t > t̄ , and this concludes the proof of the result in the case of nonnegative
data μ and u0 ∈ L1(Ω).

Step 4. Let μ ∈ M(Q) be independent on t and u0 ∈ L1(Ω) with no sign assumptions. We consider again the
function z(t, x) = u(t, x) − v(x); thanks to Proposition 3.1 it turns out to solve problem (1) with u0 − v as initial data
and μ = 0, and so, if either u0 � v or u0 � v then the result is true since z(t, x) tends to zero in L1(Ω) as t diverges
thanks to what we proved above. Now, if u⊕ and u� solve problem (1) with, respectively, max (u0, v) and min (u0, v)

as initial data, then, by comparison, we have u�(t, x) � u(t, x) � u⊕(t, x) for any t , a.e. in Ω , and this concludes the
proof since the result holds true for both u⊕ and u�. �
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