Algebraic Geometry/Ordinary Differential Equations

Special subschemes of the scheme of singularities of a plane foliation

Antonio Campillo ${ }^{\text {a }}$, Jorge Olivares ${ }^{\text {b }}$
${ }^{\text {a }}$ Departmento de Álgebra, Geometría y Topología, Universidad de Valladolid, 47005 Valladolid, Spain
${ }^{\mathrm{b}}$ Centro de Investigación en Matemáticas, A.C. A.P. 402, Guanajuato 36000, Mexico

Received 20 February 2007; accepted after revision 20 March 2007
Available online 24 April 2007
Presented by Bernard Malgrange

Abstract

From the fact that a foliation by curves of degree greater than one, with isolated singularities, in the complex projective plane \mathbb{P}^{2} is uniquely determined by its subscheme of singular points (the singular subscheme of the foliation), we pose the problem of existence of proper closed subschemes Z of the singular subscheme which still determine the foliation in a unique way. We prove the existence of such subschemes Z for foliations with reduced singular subscheme. Unlike the degree $\operatorname{deg} Z$ of such subschemes is not sharp for the posed problem, we show that it is so in the sense that Z defines the so-called polar net of the foliation. To cite this article: A. Campillo, J. Olivares, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sous-schémas spéciaux du schéma des singularités d'un feuilletage plan. Du fait qu'un feuilletage en courbes de degré strictement supérieur à un, avec singularités isolées, dans le plan projectif complexe \mathbb{P}^{2} est uniquement déterminé par son sous-schéma des points singuliers (le sous-schéma singulier du feuilletage), nous posons le problème de l'existence de sous-schémas fermés propres Z du sous-schéma singulier qui déterminent encore le feuilletage d'une manière unique. Nous démontrons l'existence d'un sous-schéma Z pour les feuilletages avec un sous-schéma singulier réduit. Si le degré $\operatorname{deg} Z$ de tels sous-schémas n’est pas optimal pour le problème posé, nous montrons qu'il en est ainsi dans le sens où Z définit ce qu'on appelle le réseau polaire du feuilletage. Pour citer cet article : A. Campillo, J. Olivares, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Cette Note concerne les feuilletages holomorphes en courbes (avec singularités isolées) dans le plan projectif complexe \mathbb{P}^{2} (voir section 2 pour les définitions). Le point de départ est le résultat des auteurs disant qu'un feuilletage de degré $r \geqslant 2$ avec singularités isolées est uniquement déterminé par son sous-schéma des points singuliers (voir Proposition 2.1 ci-dessous).

[^0]Étant donné un tel feuilletage \mathcal{F}, nous étudions le problème de l'existence de sous-schémas fermés propres de $\operatorname{SingS}(\mathcal{F})$ qui déterminent encore \mathcal{F} d'une manière unique, à savoir de sous-schémas pour lesquels $Z \subseteq \operatorname{SingS}\left(\mathcal{F}^{\prime}\right)$ implique $\mathcal{F}^{\prime}=\mathcal{F}$.

Notre premier résultat (Corollary 3.3) est général mais modeste.
Notre résultat principal est le Théorème 3.5 : Nous démontrons l'existence de tels sous-schémas Z, de degré $M_{r}=\frac{r}{2}(r+5)$, pour n'importe quel feuilletage \mathcal{F} avec sous-schéma singulier réduit. Nous montrons sur un exemple que M_{r} n'est pas le degré optimal pour le problème posé, mais que c'est le cas en ce sens qu'un tel Z définit le réseau polaire du feuilletage (voir section 4).

1. Introduction

This Note deals with holomorphic foliations by curves (with isolated singularities) in the complex projective plane \mathbb{P}^{2} (see Section 2 for definitions). The starting point is the authors' result stating that a foliation of degree $r \geqslant 2$ with isolated singularities is uniquely determined by its subscheme of singular points (see Proposition 2.1 below).

Given such a foliation \mathcal{F}, we study the problem of existence of proper closed subschemes Z of $\operatorname{SingS}(\mathcal{F})$ which still determine \mathcal{F} in a unique way, namely subschemes for which $Z \subseteq \operatorname{SingS}\left(\mathcal{F}^{\prime}\right)$ implies $\mathcal{F}^{\prime}=\mathcal{F}$. Our first result (Corollary 3.3) is general but modest. Our main result is Theorem 3.5: We prove the existence of such subschemes Z, of degree $M_{r}=\frac{r}{2}(r+5)$, for any foliation \mathcal{F} with reduced singular subscheme. We show by an example that M_{r} is not the sharp degree for the posed problem, but that it is so in the sense that such a Z defines the polar net of the foliation (see Section 4).

2. Foliations in the projective plane

Consider the complex projective plane \mathbb{P}^{2} and let $\mathcal{O}_{\mathbb{P}^{2}}$ be its structure sheaf. Let $\Theta_{\mathbb{P}^{2}}, \Omega_{\mathbb{P}^{2}}$ and \mathcal{H} be the tangent, cotangent and hyperplane sheaves on \mathbb{P}^{2}. For an $\mathcal{O}_{\mathbb{P}^{2}}$-sheaf \mathcal{E}, we will write $\mathcal{E}(d)$ for $\mathcal{E} \otimes \mathcal{H}^{\otimes d}$, if $d \geqslant 0$ and $\mathcal{E} \otimes$ $\left(\mathcal{H}^{*}\right)^{\otimes|d|}$, if $d<0$.

A holomorphic foliation by curves with singularities (or simply a foliation in the sequel) of degree r on \mathbb{P}^{2} is the class $\mathcal{F}=\hat{\alpha} \in \operatorname{Proj} \mathrm{H}^{0}\left(\mathbb{P}^{2}, \Theta_{\mathbb{P}^{2}}(r-1)\right)$ of a global section $\alpha \in \mathrm{H}^{0}\left(\mathbb{P}^{2}, \Theta_{\mathbb{P}^{2}}(r-1)\right)=\mathrm{H}^{0}\left(\mathbb{P}^{2}, \operatorname{Hom}\left(\mathcal{H}^{\otimes(-r+1)}, \Theta_{\mathbb{P}^{2}}\right)\right.$. In homogeneous coordinates $[X, Y, Z]$ on \mathbb{P}^{2} such global sections can be described in the following two equivalent ways:

1. In terms of homogeneous polynomial vector fields V of degree r in $\mathbb{C}^{3}\left(V=V_{1} \frac{\partial}{\partial X}+V_{2} \frac{\partial}{\partial Y}+V_{3} \frac{\partial}{\partial Z}\right.$, with V_{j} homogeneous of degree r), by means of the twisted Euler sequence ([5], p. 409):

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(r-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(r)^{\oplus(3)} \xrightarrow{\Pi_{*}} \Theta_{\mathbb{P}^{2}}(r-1) \longrightarrow 0 \tag{1}
\end{equation*}
$$

Since $H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(r-1)\right)=0$, it follows from the long exact cohomology sequence associated to (1) that any $\alpha \in \mathrm{H}^{0}\left(\mathbb{P}^{2}, \Theta_{\mathbb{P}^{2}}(r-1)\right)$ comes from some V in this way and, moreover, that any other such vector field V^{\prime} defines the same α if and only if $V-V^{\prime}=g \cdot R$, where g is a homogeneous polynomial of degree $r-1$, and R is the radial vector field.
2. In terms of a projective 1 -form of degree $(r+1)$, which is meant to be a 1 -form

$$
\begin{equation*}
\Omega=A \mathrm{~d} X+B \mathrm{~d} Y+C \mathrm{~d} Z \tag{2}
\end{equation*}
$$

where A, B and C are homogeneous polynomials of degree $r+1$ satisfying the so-called Euler's condition:

$$
\begin{equation*}
X A+Y B+Z C=0 . \tag{3}
\end{equation*}
$$

Given a vector field V defining α (in the sense of (1)), the 1 -form Ω may be recovered by the equation

$$
\Omega=\operatorname{det}\left(\begin{array}{ccc}
\mathrm{d} X & \mathrm{~d} Y & \mathrm{~d} Z \tag{4}\\
X & Y & Z \\
V_{1} & V_{2} & V_{3}
\end{array}\right) .
$$

Conversely, it follows from [6] that every 1-form (2) satisfying (3) has the form given by (4), for some vector field V.

Let \mathcal{F} be a foliation of degree r on \mathbb{P}^{2} : Its singular subscheme $\operatorname{SingS}(\mathcal{F})$ is the scheme of zeroes of a section $\alpha \in \mathrm{H}^{0}\left(\mathbb{P}^{2}, \Theta_{\mathbb{P}^{2}}(r-1)\right)$ defining \mathcal{F}. Accordingly, the support $\operatorname{Sing}(\mathcal{F})$ of $\Gamma_{0}=\operatorname{SingS}(\mathcal{F})$ and the defining ideal sheaf \mathcal{J}_{0} of the structure sheaf $\mathcal{O}_{\Gamma_{0}}$ of $\operatorname{SingS}(\mathcal{F})$ will be called respectively the singular set and the singular ideal of \mathcal{F}. We have a short exact sequence of sheaves

$$
\begin{equation*}
0 \longrightarrow \mathcal{J}_{0} \longrightarrow \mathcal{O}_{\mathbb{P}^{2}} \longrightarrow \mathcal{O}_{\Gamma_{0}} \longrightarrow 0 \tag{5}
\end{equation*}
$$

We shall say that \mathcal{F} has isolated singularities if $\operatorname{Sing}(\mathcal{F})$ is zero-dimensional.
It follows from (1) that $\alpha(p)=0$ if and only if $V(p)=g(p) \cdot p$ or $V(p) \wedge p=0$, and from (2) and (4), that this last condition is equivalent to $A(p)=B(p)=C(p)=0$. Hence, \mathcal{F} has isolated singularities if and only if A, B and C have no common factor and, moreover, that the singular ideal \mathcal{J}_{0} of \mathcal{F} corresponds to the homogeneous ideal (A, B, C). It is clear from this description that $\operatorname{SingS}(\mathcal{F})$ is a local complete intersection subscheme of \mathbb{P}^{2} and it is well known that

$$
\operatorname{deg} \operatorname{SingS}(\mathcal{F})=r^{2}+r+1
$$

for \mathcal{F} with isolated singularities (see [4]).
A foliation \mathcal{F} is then an algebraic assignment of a tangent direction $\alpha(q)$ to each point $q \in \mathbb{P}^{2} \backslash \operatorname{Sing}(\mathcal{F})$. Since $\alpha(q)$ defines a unique projective line L_{q} through q, this shows that \mathcal{F} defines a rational map $\Phi: \mathbb{P}^{2} \rightarrow \check{\mathbb{P}}^{2}$ called the polarity map of \mathcal{F}. The fibre $\Phi^{*} \ell$ of a line ℓ in $\check{\mathbb{P}}^{2}$ is a curve of degree $r+1$ in \mathbb{P}^{2} and these form a 2-dimensional projective linear system of curves, called accordingly the polar net relative to \mathcal{F} and denoted by $\Delta(\mathcal{F})$ (see [1]).

It turns out [2, Proposition 1.1] that $\Delta(\mathcal{F})$ is given by $\left\{\alpha A+\beta B+\gamma C=0:[\alpha, \beta, \gamma] \in \mathbb{P}^{2}\right\}$ and hence, that its base scheme coincides with $\operatorname{SingS}(\mathcal{F})$.

Proposition 2.1. ([2, Theorem 3.5]) If $r \geqslant 2$, then there exists a unique triple A, B, C (up to a scalar multiple) in $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{0}(r+1)\right)$ satisfying Euler's condition (3). In consequence, if $r \geqslant 2, \mathcal{F}$ is the unique foliation of degree r having $\operatorname{SingS}(\mathcal{F})$ as singular subscheme, and the same is true if $r=0$.

Remark 1. The algebraic proof of Proposition 2.1 consists on two parts: The first is to show that $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{0}(r+1)\right)=3$ and the second, to show that the triple A, B, C in $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{0}(r+1)\right)$ is the unique one satisfying (3). There is also a geometric proof to which we will refer in Section 4.

3. The proofs

The starting point is the following:
Lemma 3.1. Let \mathcal{F} be a foliation of degree $r \geqslant 2$ on \mathbb{P}^{2}, with isolated singularities. If Z is a closed subscheme of SingS (\mathcal{F}) such that $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=3$, then Z determines \mathcal{F} uniquely.

Proof. The inclusion $\mathcal{J}_{0} \subset \mathcal{J}_{Z}$ gives an injective map

$$
\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{0}(r+1)\right) \longrightarrow \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)
$$

between two vector spaces of the same dimension and is hence an isomorphism. The coefficients A, B, C of the 1 -form (2) hence belong to $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)$ and they are the unique triple satisfying (3).

Now recall that for a zero-dimensional complete intersection subscheme Γ of \mathbb{P}^{2}, given a subscheme $Z \subset \Gamma$, the residual subscheme Z^{\prime} of Z in Γ is a subscheme $Z^{\prime} \subset \Gamma$ which, among other properties, satisfies that $\operatorname{deg} Z+$ $\operatorname{deg} Z^{\prime}=\operatorname{deg} \Gamma$ (see [3] or [2, §1]). With this said, we state the following:

Proposition 3.2. Let \mathcal{F} be a foliation of degree $r \geqslant 2$ on \mathbb{P}^{2}, with isolated singularities. Let Z be a closed subscheme of $\operatorname{Sing}(\mathcal{F})$ and let Z^{\prime} be its residual subscheme in $\operatorname{Sing}(\mathcal{F})$. Then the following conditions are equivalent:
(i) $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=3$,
(ii) $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=\operatorname{deg} Z+3-N_{r+1}$,
(iii) $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)=0$,
where $N_{j}=h^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(j)\right)=\binom{j+2}{2}$.
Proof. On the one hand, the long exact cohomology sequences associated to (5) for Z and Z^{\prime} give

$$
\begin{align*}
& \mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)+N_{r+1}-\operatorname{deg} Z \\
& \mathrm{~h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)=\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)+N_{r-3}-\operatorname{deg} Z^{\prime} \tag{6}
\end{align*}
$$

The first of these equations gives the equivalence between (i) and (ii).
On the other hand, consider the residual subscheme $Z^{\prime \prime}$ of Z in the complete intersection subscheme Γ of two generic polars. It follows that $Z^{\prime \prime}$ consists of Z^{\prime} together with r aligned points (see [2, §1]) and hence, by applying [3, Theorem CB7] (or [2, Proposition 3.1]), Noether's $A F+B G$ and Bezout's Theorems in sequence, that

$$
\begin{align*}
\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right) & =\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime \prime}}(r-2)\right)-\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{\Gamma}(r-2)\right) \\
& =\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime \prime}}(r-2)\right)=\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right) \tag{7}
\end{align*}
$$

Eqs. (7) and (6) together give

$$
\begin{aligned}
\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right) & =\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)+N_{r-3}-\operatorname{deg} Z^{\prime}+N_{r+1}-\operatorname{deg} Z \\
& =\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)+3,
\end{aligned}
$$

which shows the equivalence between (i) and (iii).
These computations together with [2, Proposition 4.3] provide our first result:
Corollary 3.3. Let \mathcal{F} be a foliation of degree $r \geqslant 2$ on \mathbb{P}^{2}, with isolated singularities. Then any closed subscheme Z^{\prime} of $\operatorname{SingS}(\mathcal{F})$ with $\operatorname{deg} Z^{\prime} \leqslant r-2$ satisfies $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)=0$. In consequence, every subscheme Z of $\operatorname{SingS}(\mathcal{F})$ with $\operatorname{deg} Z \geqslant r^{2}+3$ determines \mathcal{F} uniquely.

We shall now concentrate on the case $\operatorname{deg} Z=M_{r}=\frac{r}{2}(r+5)$.
Lemma 3.4. Let \mathcal{F} be a foliation of degree $r \geqslant 2$ on \mathbb{P}^{2}, with isolated singularities. Let Z be a closed subscheme of $\operatorname{Sing}(\mathcal{F})$ with $\operatorname{deg} Z=M_{r}$ and let Z^{\prime} be its residual subscheme in $\operatorname{SingS}(\mathcal{F})$. Then the following conditions are equivalent:
(i) $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=3$,
(ii) $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=0$,
(iii) $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)=0$,
(iv) $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z^{\prime}}(r-3)\right)=0$.

Proof. The equivalence between the first three conditions is a simple consequence of Proposition 3.2, while the equivalence between (iii) and (iv) follows directly from the long exact cohomology sequence associated to (5) for Z^{\prime}, together with the fact that $\operatorname{deg} Z^{\prime}=N_{r-3}$.

Recall that condition (ii) above states that such Z imposes independent conditions on forms of degree $r+1$. Now we come to our main result:

Theorem 3.5. Let \mathcal{F} be a foliation of degree $r \geqslant 2$ on \mathbb{P}^{2} with reduced singular subscheme $\Gamma_{0}=\operatorname{SingS}(\mathcal{F})$. Then there exists a closed subscheme Z of Γ_{0} with $\operatorname{deg} Z=M_{r}$ and such that $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=0$. In consequence, Z determines the foliation \mathcal{F} uniquely.

Proof. Recall first form Proposition 3.2 that N_{j} stands for $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(j)\right)=\binom{j+2}{2}$. Now let \mathcal{J}_{0} be the singular ideal of \mathcal{F}. Since $\mathrm{h}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{0}(r+1)\right)=3$ (see Remark 1), it follows from the long exact cohomology sequence associated to (5) that $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{0}(r+1)\right)=\frac{1}{2}(r-2)(r-1)=N_{r-3}$: This means that Γ_{0} imposes

$$
\begin{equation*}
N_{r+1}-3=r^{2}+r+1-N_{r-3}=\frac{r}{2}(r+5) \tag{8}
\end{equation*}
$$

conditions on forms of degree $r+1$, and that precisely N_{r-3} of them are linearly dependent.
From this remark, the existence of such subschemes Z follows merely from a Linear Algebra argument: Since Γ_{0} is reduced, its support consists of $r^{2}+r+1$ distinct closed points, each of which gives rise to a linear condition in the N_{r+1} coefficients of the space of forms of degree $r+1$. The rank of this system of equations is $\frac{r}{2}(r+5)$ and hence, there exists subsets of this number of conditions (and so, subsets Z of $\frac{r}{2}(r+5)$ closed points) which are linearly independent (and of which the rest of conditions are dependent) in the space of forms of degree $r+1$. Hence $\mathrm{h}^{1}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)=0$. This, together with Lemmas 3.4 and 3.1, give the second statement and finishes the proof.

4. Closing remarks

Our results have the following nice interpretation: Lemma 3.1 says that $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{J}_{Z}(r+1)\right)$ defines a net of plane curves Δ_{Z} which is actually $\Delta(\mathcal{F})$. Given a (closed) point $p \in \mathbb{P}^{2}$, two possibilities may occur: p is a base point of the linear system Δ_{Z}, in which case it is a singular point of the unique \mathcal{F} containing Z; otherwise, the base points of the pencil $\Delta_{p} \subset \Delta_{Z}$ of curves in the net through p lie in a line L. This line is precisely $\Phi(p)=L_{p}$, the image of p under the polarity map (this is the heart of the geometric proof of Proposition 2.1). With this in mind, let us say that an arbitrary subscheme $Z \subset \mathbb{P}^{2}$
(i) defines a net (call it Δ_{Z}), if $\mathrm{h}^{0}\left(\mathbb{P}^{2}, I_{Z}(r+1)\right)=3$, and that
(ii) defines a net of polars if it defines a net with no base curve which satisfies that, for a generic closed point p, the base points of the pencil $\Delta_{p} \subset \Delta_{Z}$ lie in a line.

The remark is that if Z is a priori a subscheme of $\operatorname{SingS}(\mathcal{F})$, then the conditions (1) Z defines a net (2) Z defines a net of polars, and (3) Z defines the net of polars $\Delta(\mathcal{F})$ of \mathcal{F}, are all equivalent and moreover, \mathcal{F} is the unique foliation such that $Z \subset \operatorname{SingS}(\mathcal{F})$.

What we have shown then is that M_{r} is the minimal degree d of a subscheme $Z \subset \operatorname{SingS}(\mathcal{F})$ such that $\Delta_{Z}=\Delta(\mathcal{F})$. Theorem 3.5 states that there always exist subschemes with such a minimal degree for foliations \mathcal{F} with $\operatorname{SingS}(\mathcal{F})$ reduced. However, this degree M_{r} is not sharp for uniquely determining \mathcal{F} as the following example shows:

Fix a general element \mathcal{F}_{α} of the family of foliations of degree $r=4$ given in [7], consider a subscheme $Z^{\prime} \subset$ $\operatorname{SingS}\left(\mathcal{F}_{\alpha}\right)$ of degree 4 lying in no line and let Z be its residual subscheme in $\operatorname{SingS}\left(\mathcal{F}_{\alpha}\right)$. Then $\operatorname{deg} Z=17<18=M_{4}$ and it can be shown that Z determines \mathcal{F}_{α} uniquely.

The existence problem of subschemes Z of sharp degree which determine \mathcal{F} uniquely will be tackled in a forthcoming extended paper.

References

[1] A. Campillo, J. Olivares, Assigned base conditions and geometry of foliations on the projective plane, in: Singularities, Sapporo 1998, Advanced Studies in Pure Mathematics, vol. 29, 2000, pp. 97-113.
[2] A. Campillo, J. Olivares, Polarity with respect to a foliation and Cayley-Bacharach theorems, J. Reine Angew. Math. 534 (2001) $95-118$.
[3] D. Eisenbud, M. Green, J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996) $295-324$.
[4] X. Gómez-Mont, G. Kempf, Stability of meromorphic vector fields in projective spaces, Comm. Math. Helv. 64 (1989) $462-473$.
[5] Ph. Griffiths, J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience (John Wiley \& Sons), New York, 1978.
[6] J.P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708, Springer, Berlin, 1979.
[7] A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École. Norm. Sup. 35 (2002) 231-266.

[^0]: E-mail addresses: campillo@agt.uva.es (A. Campillo), olivares@cimat.mx (J. Olivares).

