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Abstract

From the fact that a foliation by curves of degree greater than one, with isolated singularities, in the complex projective plane
P2 is uniquely determined by its subscheme of singular points (the singular subscheme of the foliation), we pose the problem of
existence of proper closed subschemes Z of the singular subscheme which still determine the foliation in a unique way. We prove
the existence of such subschemes Z for foliations with reduced singular subscheme. Unlike the degree degZ of such subschemes
is not sharp for the posed problem, we show that it is so in the sense that Z defines the so-called polar net of the foliation. To cite
this article: A. Campillo, J. Olivares, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sous-schémas spéciaux du schéma des singularités d’un feuilletage plan. Du fait qu’un feuilletage en courbes de degré stric-
tement supérieur à un, avec singularités isolées, dans le plan projectif complexe P

2 est uniquement déterminé par son sous-schéma
des points singuliers (le sous-schéma singulier du feuilletage), nous posons le problème de l’existence de sous-schémas fermés
propres Z du sous-schéma singulier qui déterminent encore le feuilletage d’une manière unique. Nous démontrons l’existence d’un
sous-schéma Z pour les feuilletages avec un sous-schéma singulier réduit. Si le degré degZ de tels sous-schémas n’est pas optimal
pour le problème posé, nous montrons qu’il en est ainsi dans le sens où Z définit ce qu’on appelle le réseau polaire du feuilletage.
Pour citer cet article : A. Campillo, J. Olivares, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Cette Note concerne les feuilletages holomorphes en courbes (avec singularités isolées) dans le plan projectif
complexe P

2 (voir section 2 pour les définitions). Le point de départ est le résultat des auteurs disant qu’un feuilletage
de degré r � 2 avec singularités isolées est uniquement déterminé par son sous-schéma des points singuliers (voir
Proposition 2.1 ci-dessous).
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Étant donné un tel feuilletage F , nous étudions le problème de l’existence de sous-schémas fermés propres de
SingS(F) qui déterminent encore F d’une manière unique, à savoir de sous-schémas pour lesquels Z ⊆ SingS(F ′)
implique F ′ = F .

Notre premier résultat (Corollary 3.3) est général mais modeste.
Notre résultat principal est le Théorème 3.5 : Nous démontrons l’existence de tels sous-schémas Z, de degré

Mr = r
2 (r + 5), pour n’importe quel feuilletage F avec sous-schéma singulier réduit. Nous montrons sur un exemple

que Mr n’est pas le degré optimal pour le problème posé, mais que c’est le cas en ce sens qu’un tel Z définit le réseau
polaire du feuilletage (voir section 4).

1. Introduction

This Note deals with holomorphic foliations by curves (with isolated singularities) in the complex projective
plane P

2 (see Section 2 for definitions). The starting point is the authors’ result stating that a foliation of degree
r � 2 with isolated singularities is uniquely determined by its subscheme of singular points (see Proposition 2.1
below).

Given such a foliation F , we study the problem of existence of proper closed subschemes Z of SingS(F) which
still determine F in a unique way, namely subschemes for which Z ⊆ SingS(F ′) implies F ′ = F . Our first result
(Corollary 3.3) is general but modest. Our main result is Theorem 3.5: We prove the existence of such subschemes Z,
of degree Mr = r

2 (r + 5), for any foliation F with reduced singular subscheme. We show by an example that Mr is
not the sharp degree for the posed problem, but that it is so in the sense that such a Z defines the polar net of the
foliation (see Section 4).

2. Foliations in the projective plane

Consider the complex projective plane P
2 and let OP2 be its structure sheaf. Let ΘP2 ,ΩP2 and H be the tangent,

cotangent and hyperplane sheaves on P2. For an OP2 -sheaf E , we will write E(d) for E ⊗ H⊗d , if d � 0 and E ⊗
(H∗)⊗|d|, if d < 0.

A holomorphic foliation by curves with singularities (or simply a foliation in the sequel) of degree r on P
2 is the

class F = α̂ ∈ Proj H0(P2,ΘP2(r − 1)) of a global section α ∈ H0(P2,ΘP2(r − 1)) = H0(P2,Hom(H⊗(−r+1),ΘP2).
In homogeneous coordinates [X,Y,Z] on P

2 such global sections can be described in the following two equivalent
ways:

1. In terms of homogeneous polynomial vector fields V of degree r in C
3 (V = V1

∂
∂X

+ V2
∂
∂Y

+ V3
∂
∂Z

, with Vj

homogeneous of degree r), by means of the twisted Euler sequence ([5], p. 409):

0 −→OP2(r − 1) −→ OP2(r)
⊕(3) Π∗−→ ΘP2(r − 1) −→ 0. (1)

Since H1(P2,OP2(r − 1)) = 0, it follows from the long exact cohomology sequence associated to (1) that any
α ∈ H0(P2,ΘP2(r − 1)) comes from some V in this way and, moreover, that any other such vector field V ′
defines the same α if and only if V − V ′ = g · R, where g is a homogeneous polynomial of degree r − 1, and R

is the radial vector field.
2. In terms of a projective 1-form of degree (r + 1), which is meant to be a 1-form

Ω = AdX + B dY + C dZ (2)

where A,B and C are homogeneous polynomials of degree r + 1 satisfying the so-called Euler’s condition:

XA + YB + ZC = 0. (3)

Given a vector field V defining α (in the sense of (1)), the 1-form Ω may be recovered by the equation

Ω = det

(dX dY dZ

X Y Z

V1 V2 V3

)
. (4)

Conversely, it follows from [6] that every 1-form (2) satisfying (3) has the form given by (4), for some vector field V .
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Let F be a foliation of degree r on P
2: Its singular subscheme SingS(F) is the scheme of zeroes of a section

α ∈ H0(P2,ΘP2(r − 1)) defining F . Accordingly, the support Sing(F) of Γ0 = SingS(F) and the defining ideal sheaf
J0 of the structure sheaf OΓ0 of SingS(F) will be called respectively the singular set and the singular ideal of F . We
have a short exact sequence of sheaves

0 −→ J0 −→OP2 −→ OΓ0 −→ 0. (5)

We shall say that F has isolated singularities if Sing(F) is zero-dimensional.
It follows from (1) that α(p) = 0 if and only if V (p) = g(p) · p or V (p) ∧ p = 0, and from (2) and (4), that

this last condition is equivalent to A(p) = B(p) = C(p) = 0. Hence, F has isolated singularities if and only if A,B

and C have no common factor and, moreover, that the singular ideal J0 of F corresponds to the homogeneous ideal
(A,B,C). It is clear from this description that SingS(F) is a local complete intersection subscheme of P

2 and it is
well known that

deg SingS(F) = r2 + r + 1

for F with isolated singularities (see [4]).
A foliation F is then an algebraic assignment of a tangent direction α(q) to each point q ∈ P

2 \ Sing(F). Since
α(q) defines a unique projective line Lq through q , this shows that F defines a rational map Φ : P2 → P̌

2 called the
polarity map of F . The fibre Φ∗	 of a line 	 in P̌

2 is a curve of degree r + 1 in P
2 and these form a 2-dimensional

projective linear system of curves, called accordingly the polar net relative to F and denoted by Δ(F) (see [1]).
It turns out [2, Proposition 1.1] that Δ(F) is given by {αA + βB + γC = 0: [α,β, γ ] ∈ P

2} and hence, that its
base scheme coincides with SingS(F).

Proposition 2.1. ([2, Theorem 3.5]) If r � 2, then there exists a unique triple A,B,C (up to a scalar multiple) in
H0(P2,J0(r + 1)) satisfying Euler’s condition (3). In consequence, if r � 2, F is the unique foliation of degree r

having SingS(F) as singular subscheme, and the same is true if r = 0.

Remark 1. The algebraic proof of Proposition 2.1 consists on two parts: The first is to show that h0(P2,J0(r +1)) = 3
and the second, to show that the triple A,B,C in H0(P2,J0(r + 1)) is the unique one satisfying (3). There is also
a geometric proof to which we will refer in Section 4.

3. The proofs

The starting point is the following:

Lemma 3.1. Let F be a foliation of degree r � 2 on P
2, with isolated singularities. If Z is a closed subscheme of

SingS(F) such that h0(P2,JZ(r + 1)) = 3, then Z determines F uniquely.

Proof. The inclusion J0 ⊂ JZ gives an injective map

H0(
P

2,J0(r + 1)
) −→ H0(

P
2,JZ(r + 1)

)
between two vector spaces of the same dimension and is hence an isomorphism. The coefficients A,B,C of the
1-form (2) hence belong to H0(P2,JZ(r + 1)) and they are the unique triple satisfying (3). �

Now recall that for a zero-dimensional complete intersection subscheme Γ of P
2, given a subscheme Z ⊂ Γ ,

the residual subscheme Z′ of Z in Γ is a subscheme Z′ ⊂ Γ which, among other properties, satisfies that degZ +
degZ′ = degΓ (see [3] or [2, §1]). With this said, we state the following:

Proposition 3.2. Let F be a foliation of degree r � 2 on P
2, with isolated singularities. Let Z be a closed subscheme

of SingS(F) and let Z′ be its residual subscheme in SingS(F). Then the following conditions are equivalent:

(i) h0(P2,JZ(r + 1)) = 3,
(ii) h1(P2,JZ(r + 1)) = degZ + 3 − Nr+1,
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(iii) h1(P2,JZ′(r − 3)) = 0,

where Nj = h0(P2,OP2(j)) = (
j+2

2

)
.

Proof. On the one hand, the long exact cohomology sequences associated to (5) for Z and Z′ give

h0(
P

2,JZ(r + 1)
) = h1(

P
2,JZ(r + 1)

) + Nr+1 − degZ,

h0(
P

2,JZ′(r − 3)
) = h1(

P
2,JZ′(r − 3)

) + Nr−3 − degZ′. (6)

The first of these equations gives the equivalence between (i) and (ii).
On the other hand, consider the residual subscheme Z′′ of Z in the complete intersection subscheme Γ of two

generic polars. It follows that Z′′ consists of Z′ together with r aligned points (see [2, §1]) and hence, by applying
[3, Theorem CB7] (or [2, Proposition 3.1]), Noether’s AF + BG and Bezout’s Theorems in sequence, that

h1(
P

2,JZ(r + 1)
) = h0(

P
2,JZ′′(r − 2)

) − h0(
P

2,JΓ (r − 2)
)

= h0(
P

2,JZ′′(r − 2)
) = h0(

P
2,JZ′(r − 3)

)
. (7)

Eqs. (7) and (6) together give

h0(
P

2,JZ(r + 1)
) = h1(

P
2,JZ′(r − 3)

) + Nr−3 − degZ′ + Nr+1 − degZ

= h1(
P

2,JZ′(r − 3)
) + 3,

which shows the equivalence between (i) and (iii). �
These computations together with [2, Proposition 4.3] provide our first result:

Corollary 3.3. Let F be a foliation of degree r � 2 on P
2, with isolated singularities. Then any closed subscheme Z′

of SingS(F) with degZ′ � r − 2 satisfies h1(P2,JZ′(r − 3)) = 0. In consequence, every subscheme Z of SingS(F)

with degZ � r2 + 3 determines F uniquely.

We shall now concentrate on the case degZ = Mr = r
2 (r + 5).

Lemma 3.4. Let F be a foliation of degree r � 2 on P
2, with isolated singularities. Let Z be a closed subscheme

of SingS(F) with degZ = Mr and let Z′ be its residual subscheme in SingS(F). Then the following conditions are
equivalent:

(i) h0(P2,JZ(r + 1)) = 3,
(ii) h1(P2,JZ(r + 1)) = 0,

(iii) h1(P2,JZ′(r − 3)) = 0,
(iv) h0(P2,JZ′(r − 3)) = 0.

Proof. The equivalence between the first three conditions is a simple consequence of Proposition 3.2, while the
equivalence between (iii) and (iv) follows directly from the long exact cohomology sequence associated to (5) for Z′,
together with the fact that degZ′ = Nr−3. �

Recall that condition (ii) above states that such Z imposes independent conditions on forms of degree r + 1. Now
we come to our main result:

Theorem 3.5. Let F be a foliation of degree r � 2 on P
2 with reduced singular subscheme Γ0 = SingS(F). Then

there exists a closed subscheme Z of Γ0 with degZ = Mr and such that h1(P2,JZ(r + 1)) = 0. In consequence,
Z determines the foliation F uniquely.
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Proof. Recall first form Proposition 3.2 that Nj stands for h0(P2,OP2(j)) = (
j+2

2

)
. Now let J0 be the singular ideal

of F . Since h0(P2,J0(r + 1)) = 3 (see Remark 1), it follows from the long exact cohomology sequence associated to
(5) that h1(P2,J0(r + 1)) = 1

2 (r − 2)(r − 1) = Nr−3: This means that Γ0 imposes

Nr+1 − 3 = r2 + r + 1 − Nr−3 = r

2
(r + 5) (8)

conditions on forms of degree r + 1, and that precisely Nr−3 of them are linearly dependent.
From this remark, the existence of such subschemes Z follows merely from a Linear Algebra argument: Since Γ0

is reduced, its support consists of r2 + r + 1 distinct closed points, each of which gives rise to a linear condition
in the Nr+1 coefficients of the space of forms of degree r + 1. The rank of this system of equations is r

2 (r + 5)

and hence, there exists subsets of this number of conditions (and so, subsets Z of r
2 (r + 5) closed points) which are

linearly independent (and of which the rest of conditions are dependent) in the space of forms of degree r + 1. Hence
h1(P2,JZ(r + 1)) = 0. This, together with Lemmas 3.4 and 3.1, give the second statement and finishes the proof. �
4. Closing remarks

Our results have the following nice interpretation: Lemma 3.1 says that H0(P2,JZ(r + 1)) defines a net of plane
curves ΔZ which is actually Δ(F). Given a (closed) point p ∈ P

2, two possibilities may occur: p is a base point of
the linear system ΔZ , in which case it is a singular point of the unique F containing Z; otherwise, the base points of
the pencil Δp ⊂ ΔZ of curves in the net through p lie in a line L. This line is precisely Φ(p) = Lp , the image of p

under the polarity map (this is the heart of the geometric proof of Proposition 2.1). With this in mind, let us say that
an arbitrary subscheme Z ⊂ P

2

(i) defines a net (call it ΔZ), if h0(P2, IZ(r + 1)) = 3, and that
(ii) defines a net of polars if it defines a net with no base curve which satisfies that, for a generic closed point p, the

base points of the pencil Δp ⊂ ΔZ lie in a line.

The remark is that if Z is a priori a subscheme of SingS(F), then the conditions (1) Z defines a net (2) Z defines a net
of polars, and (3) Z defines the net of polars Δ(F) of F , are all equivalent and moreover, F is the unique foliation
such that Z ⊂ SingS(F).

What we have shown then is that Mr is the minimal degree d of a subscheme Z ⊂ SingS(F) such that ΔZ = Δ(F).
Theorem 3.5 states that there always exist subschemes with such a minimal degree for foliations F with SingS(F)

reduced. However, this degree Mr is not sharp for uniquely determining F as the following example shows:
Fix a general element Fα of the family of foliations of degree r = 4 given in [7], consider a subscheme Z′ ⊂

SingS(Fα) of degree 4 lying in no line and let Z be its residual subscheme in SingS(Fα). Then degZ = 17 < 18 = M4
and it can be shown that Z determines Fα uniquely.

The existence problem of subschemes Z of sharp degree which determine F uniquely will be tackled in a forth-
coming extended paper.
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