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Abstract

We establish that, if a symmetric matrix field defined over a simply-connected open set satisfies the Saint Venant equations in
curvilinear coordinates, then its coefficients are the linearized strains associated with a displacement field. Our proof provides an
explicit algorithm for recovering such a displacement field, which may be viewed as the linear counterpart of the reconstruction of
an immersion from a given flat Riemannian metric. To cite this article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Reconstruction d’un champ de déplacements à partir de son tenseur des déformations linéarisées en coordonnées curvi-
lignes. Nous montrons que, si un champ de matrices symétriques défini sur un ouvert simplement connexe vérifie les équations de
Saint Venant en coordonnées curvilignes, alors c’est le tenseur des déformations linéarisées associé à un champ de déplacements.
Notre démonstration fournit un algorithme explicite de reconstruction d’un tel champ de déplacements, qui peut être considéré
comme la version linéarisée de la reconstruction d’une immersion à partir d’une métrique riemannienne plate. Pour citer cet
article : P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notations and preliminaries

Latin indices and exponents vary in the set {1,2,3} and the summation convention with respect to repeated indices
and exponents is systematically used in conjunction with this rule.

Let Ω be an open subset of R
3 and let there be given an immersion Θ ∈ C3(Ω;R

3). For each x = (xi) ∈ Ω , the
three vectors gi (x) := ∂iΘ(x), where ∂i := ∂/∂xi , form a basis in the tangent space, identified here with R

3, to the
manifold Θ(Ω) at the point Θ(x). The vector fields gj , defined by gi (x) · gj (x) = δ

j
i for all x ∈ Ω, form the dual

basis of the basis formed by the vector fields gi . The manifold Θ(Ω) being naturally endowed with the Euclidean
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metric inherited from the surrounding space R
3, the immersion Θ induces a Riemannian metric on Ω , defined by its

covariant components

gij (x) = gi (x) · gj (x) for all x ∈ Ω.

The contravariant components of this metric are defined by gk�(x) = gk(x) · g�(x), or equivalently, by (gk�(x)) =
(gij (x))−1 for all x ∈ Ω . This metric induces the Levi-Civita connection in the manifold Ω , defined by the Christoffel
symbols

Γ k
ij := 1

2
gk�(∂igj� + ∂jgi� − ∂�gij ) = Γ k

ji in Ω.

Note that the regularity assumption on the immersion Θ implies that gij , g
k� ∈ C2(Ω) and that Γ k

ij ∈ C1(Ω). The

covariant derivatives of the covariant components ui ∈ H 1(Ω) of a vector field uigi are defined by

uj‖i := ∂iuj − Γ k
ijuk.

The covariant derivatives of the covariant components Tij ∈ L2(Ω) of a second-order tensor field are defined by

Tij‖k := ∂kTij − Γ �
kiT�j − Γ �

kjTi�

and they belong to the space H−1(Ω). The covariant derivatives of the covariant components Tijk ∈ H−1(Ω) of a
third-order tensor field are defined by

Tijk‖� := ∂�Tijk − Γ t
�iTtjk − Γ t

�jTitk − Γ t
�kTij t ,

and they belong to the space H−2(Ω). If Tij ∈ L2(Ω), the second-order covariant derivatives Tij‖k� are defined by
the relations

Tij‖k� := ∂�Tij‖k − Γ t
�iTtj‖k − Γ t

�jTit‖k − Γ t
�kTij‖t = Tij‖�k.

A domain in R
3 is a bounded and connected open set Ω with a Lipschitz-continuous boundary, the set Ω being

locally on the same side of its boundary.
Detailed proofs of the results announced in this Note are given in [4].

2. Poincaré theorem in curvilinear coordinates

Poincaré’s Theorem, which is classically proved only for continuously differentiable functions, was generalized by
Ciarlet and Ciarlet, Jr. [1] as follows:

Theorem 2.1. Let Ω be a simply connected domain of R
3. Let hk ∈ H−1(Ω) be distributions that satisfy

∂�hk = ∂kh� in H−2(Ω). Then there exists a function p ∈ L2(Ω), unique up to an additive constant, such that
hk = ∂kp in H−1(Ω).

Clearly, this theorem remains valid if the functions hk are replaced by matrix fields Hk with components hijk in
H−1(Ω), the function p being then replaced by a matrix field P with components pij in L2(Ω). Using Theorem 2.1,
one can then show that a similar ‘Poincaré theorem in curvilinear coordinates’ holds as well. The mapping Θ is that
introduced in Section 1.

Theorem 2.2. Let Ω be a simply connected domain of R
3 and let Θ ∈ C3(Ω;R

3) be an immersion. Let Hk be matrix
fields with components hijk ∈ H−1(Ω) satisfying

hijk‖� = hij�‖k in H−2(Ω).

Then there exist a matrix field P with components pij ∈ L2(Ω), unique up to additive constants, such that

hijk = pij‖k in H−1(Ω).

Note that Theorem 2.2 can also be established as a consequence of Theorem A.4 of [6] establishing the existence
of weak solutions to Pfaff systems, of which the equations pij‖ = hijk constitutes a special case.
k
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3. Saint Venant equations in curvilinear coordinates

Let Ω be a bounded open subset of R
3 and let Θ ∈ C3(Ω;R

3) be an immersion. The vector fields gi ∈ C2(Ω;R
3)

and gi ∈ C2(Ω;R
3) are defined as in Section 1. With every vector field u ∈ H 1(Ω;R

3), we associate the covariant
components of the linearized change of metric tensor, also known as the linearized strains in curvilinear coordinates,
defined by

εij (u) := 1

2
(∂iu · gj + gi · ∂ju).

Note that εij (u) ∈ L2(Ω) for all i, j and that εij (u) = εji(u).
The next theorem shows that the functions εij (u) satisfy crucial compatibility relations, which constitute the Saint

Venant equations in curvilinear coordinates, since they generalize the well-known Saint Venant equations in Cartesian
coordinates. The proof rests on various computations involving derivatives in the distributional sense.

Theorem 3.1. The linearized strains in curvilinear coordinates εij (u) ∈ L2(Ω) associated with a vector field
u ∈ H 1(Ω;R

3) satisfy the relations

εki‖j�(u) + ε�j‖ik(u) − εkj‖i�(u) − ε�i‖jk(u) = 0 in H−2(Ω).

4. Recovery of a vector field from the associated linearized change of metric tensor

We now characterize the space of all symmetric matrix fields that satisfy the Saint Venant equations in curvilinear
coordinates found in Theorem 3.1.

Theorem 4.1. Let Ω be a simply-connected domain in R
3 and let Θ ∈ C3(Ω;R

3) be an immersion. Let there be given
a symmetric matrix field (eij ) ∈ L2(Ω;S

3) that satisfies the Saint Venant equations in curvilinear coordinates

eki‖j� + e�j‖ik − ekj‖i� − e�i‖jk = 0 in H−2(Ω).

Then there exists a vector field v ∈ H 1(Ω;R
3) such that

eij = 1

2
(∂iv · gj + gi · ∂jv) in L2(Ω).

Sketch of proof. Since the Saint Venant equations are satisfied, Theorem 2.2 shows that there exist functions
ãij ∈ L2(Ω), unique up to additive constants, such that ãij‖k = ekj‖i − eki‖j in H−1(Ω). Since the right-hand side
of this equation is antisymmetric in (i, j), it follows that ãij‖k + ãj i‖k = 0 in H−1(Ω).

Therefore, again by Theorem 2.2, there exist constants cij = cji such that ãij (x) + ãj i(x) = cij for almost all
x ∈ Ω . It then follows that the functions aij := ãij + 1

2cij are antisymmetric in (i, j), belong to the space L2(Ω), and
satisfy the equations aij‖k = ekj‖i − eki‖j .

To prove that there exists a solution v ∈ H 1(Ω;R3) to the system ∂iv = (eij + aij )gj , it is enough to prove that

∂k((eij + aij )gj ) = ∂i((ekj + akj )gj ). Since Γ
j
ki = Γ

j
ik , this relation in fact amounts to proving that ei�‖k + ai�‖k =

ek�‖i + ak�‖i , which is in turn equivalent to proving that ei�‖k + ek�‖i − eki‖� = ek�‖i + ei�‖k − eik‖�. But this last
equation is clearly satisfied, since the matrix field (eij ) is symmetric. The existence of the field v then follows from
Theorem 2.1.

That the vector field v does indeed satisfy the required equations is a consequence of the symmetry of the matrix
field (eij ) and of the anti-symmetry of the matrix field (aij ). �

Note that Theorem 3 of [3] shows that, if the open set Ω is connected, any other vector field ṽ ∈ H 1(Ω;R
3)

that satisfies eij = 1
2 (∂i ṽ · gj + gi · ∂j ṽ) in L2(Ω;S

3) is necessarily of the form ṽ(x) = v(x) + (a + b ∧
Θ(x)) for almost all x ∈ Ω, where a and b are vectors in R

3.
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5. The Riemann curvature tensor and the Saint Venant equations

We now show that the Saint Venant equations in curvilinear coordinates are nothing but an infinitesimal version
of the compatibility conditions that a three-dimensional Riemannian space must satisfy in order to be isometrically
immersed in the three-dimensional Euclidean space. These compatibility conditions are first recalled in the next the-
orem, which is a straightforward extension of a well-known result in differential geometry, classically established
only for smoother immersions Θ ∈ C3(Ω;R

3). The symbol S
3, resp. S

3
>, designates the set of all symmetric, resp.

positive-definite symmetric, real matrices of order three.

Theorem 5.1. Let Ω be an open subset of R
3 and let p > 3. Given any immersion Θ ∈ W

2,p

loc (Ω;R
3), let the matrix

field (gij ) ∈ W
1,p

loc (Ω;S
3
>) be defined by

gij = ∂iΘ · ∂jΘ in Ω.

Then the Riemann curvature tensor associated with the matrix field (gij ) vanishes in the distributional sense, i.e.,

Rskij := gs�

(
∂iΓ

�
jk − ∂jΓ

�
ik + Γ r

jkΓ
�
ir − Γ r

ikΓ
�
jr

) = 0 in D′(Ω).

As shown in Theorem 4.4 of S. Mardare [5], the converse of Theorem 5.1 is also true:

Theorem 5.2. Let Ω be a connected and simply-connected open subset of R
3 and let (gij ) ∈ W

1,∞
loc (Ω;S

3
>) be a field

of positive-definite symmetric matrices. If the Riemann curvature tensor associated with the matrix field (gij ) vanishes
in the distributional sense, i.e., if

Rskij := gs�

(
∂iΓ

�
jk − ∂jΓ

�
ik + Γ r

jkΓ
�
ir − Γ r

ikΓ
�
jr

) = 0 in D′(Ω),

then there exists an immersion Θ ∈ W
2,∞
loc (Ω;R

3) such that

gij = ∂iΘ · ∂jΘ in Ω.

In order to show that Theorems 3.1 and 4.1 are nothing but the ‘infinitesimal’ versions of Theorems 5.1 and 5.2,
respectively, we show that the left-hand side of the Saint Venant equations is in a specific sense the linear part of the
Riemann curvature tensor.

Theorem 5.3. Let Ω be a bounded open subset in R
3 and let there be given a matrix field (gij ) ∈ C2(Ω;S

3
>) whose

associated Riemann curvature tensor field vanishes in Ω . Then, for all ‘increments’ symmetric matrix fields (eij ) ∈
W 1,p(Ω;S

3), p > 3, the linear part with respect to (eij ) of the covariant components of the Riemann curvature tensor
associated with the metric (gij + eij ) are given by

Rlin
skij (eij ) = eki‖js + esj‖ik − ekj‖is − esi‖jk, (1)

where eki‖js denote the second-order covariant derivatives of eki (cf. Section 1).

Sketch of proof. For all ε > 0, define the matrix field
(
gij (ε)

) := (gij ) + ε(eij ) ∈ W 1,p
(
Ω;S

3).
Since W 1,p(Ω) ⊂ C0(Ω) by the Sobolev embedding theorem, there exists a number ε0 > 0 such that, for all 0 < ε <

ε0, the matrix field (gij (ε)) is positive definite in Ω . This implies that gk�(ε) ∈ W 1,p(Ω), where (gk�(ε)) = (gij (ε))
−1

is the inverse of the matrix field (gij (ε)). Hence the Christoffel symbols

Γrjk(ε) := 1

2

{
∂jgrk(ε) + ∂kgjr (ε) − ∂rgjk(ε)

}
and Γ �

jk(ε) := g�r(ε)Γrjk(ε)

belong to the space Lp(Ω). Consequently, the Riemann curvature tensor associated with the metric (gij (ε)) is well
defined in the sense of distributions by its mixed components

R� (ε) := ∂iΓ
� (ε) − ∂jΓ

� (ε) + Γ r (ε)Γ � (ε) − Γ r (ε)Γ � (ε),
·kij jk ik jk ir ik jr
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or by its covariant components

Rskij (ε) = gs�(ε)R
�·kij (ε).

The linear part with respect to (eij ) of each covariant component of the Riemann curvature tensor associated with
the metric (gij + eij ) is then defined by the limit

Rlin
skij := lim

ε→0
ε 	=0

Rskij (ε)

ε
,

since the Riemann curvature tensor of the metric (gij ) vanishes in Ω by assumption.
In order to compute this linear part, we then expand all the above functions as power series in ε. After some lengthy

computations (all justified in the sense of distributions), we find in this fashion that

R�·kij (ε) = εg�r (erj‖ki − ejk‖ri − eri‖kj + eik‖rj ) + O(ε2) in H−1(Ω),

so that

R�kij (ε) = εg�rg
rs(esj‖ki − ejk‖si − esi‖kj + eik‖sj ) + O(ε2)

= e�j‖ki − ejk‖�i − e�i‖kj + eik‖�j + O(ε2) in H−1(Ω). �
Note that the matrix field (eij ) is assumed in Theorem 5.3 to be in the space W 1,p(Ω;S

3) for p > 3, and not only
in L2(Ω;S

3), in order to have (gij (ε)) ∈ W 1,p(Ω;S
3), which is the minimal regularity assumption under which the

components R�kij (ε) of the Riemannian curvature tensor are well defined in the sense of distributions. By contrast,
the functions Rlin

skij can be extended by continuity to matrix fields (eij ) that belong only to the space L2(Ω;S
3).

Let Ω̂ be an open subset of R
3. The Cartesian coordinates of a point x̂ ∈ Ω̂ are denoted x̂i and the partial derivative

operators of the first and second order of functions defined over Ω̂ are denoted ∂̂i := ∂/∂x̂i and ∂̂ij := ∂2/∂x̂i∂x̂j .
With these notations, the following theorem was proved by Ciarlet and Ciarlet, Jr. [1].

Theorem 5.4. Let Ω̂ be a simply-connected domain of R
3 and let (êij ) ∈ L2(Ω̂;S

3) be a symmetric matrix field that
satisfies the following compatibility conditions

∂̂�j êik + ∂̂ki êj� − ∂̂�i êjk − ∂̂kj êi� = 0 in H−2(Ω̂).

Then there exists a vector field v̂ = (v̂i) ∈ H 1(Ω̂;R
3) such that

êij = 1

2
(∂̂j v̂i + ∂̂i v̂j ).

The compatibility relations in Theorem 5.4 are the Saint Venant equations in Cartesian coordinates. Note that
the Saint Venant equations in curvilinear coordinates (Section 3) corresponds to the particular case where Θ = idΩ ,
which thus justifies their name. Therefore, Theorem 4.1 implies Theorem 5.4. Remarkably, the converse is also true;
see [4] for details.

Finally, note that these equations have been likewise extended to ‘Saint Venant equations on a surface’; cf. [2].
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