

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 353-356

http://france.elsevier.com/direct/CRASS1/

Group Theory

On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups

Nadir Trabelsi

Department of Mathematics, Faculty of Sciences, University Ferhat Abbas, Setif 19000, Algeria

Received 19 March 2006; accepted 7 February 2007

Available online 13 March 2007

Presented by Christophe Soulé

Abstract

Let Ω be a class of groups. A group is said to be minimal non- Ω if it is not an Ω -group, while all its proper subgroups belong to Ω . In this Note we prove that a minimal non-(torsion-by-nilpotent) (respectively, non-((locally finite)-by-nilpotent)) group G is a finitely generated perfect group which has no proper subgroup of finite index and such that G/Frat(G) is an infinite simple group, where Frat(G) stands for the Frattini subgroup of G. To cite this article: N. Trabelsi, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur les groupes minimaux non-(périodiques-par-nilpotents) et non-((localement finis)-par-nilpotents). Soit Ω une classe de groupes. Un groupe est dit minimal non- Ω s'il n'est pas un Ω -groupe alors que tous ses sous-groupes propres le sont. Dans cette Note, nous prouvons que si *G* est un groupe minimal non-(périodique-par-nilpotent) (respectivement, non-((localement fini)-par-nilpotent)), alors *G* est un groupe parfait de type fini qui n'admet pas de sous-groupe propre d'indice fini et tel que G/Frat(G) est un groupe simple infini, où Frat(G) désigne le sous-groupe de Frattini de *G*. *Pour citer cet article : N. Trabelsi, C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit Ω une classe de groupes. Un groupe G est dit minimal non- Ω s'il n'est pas un Ω -groupe alors que tous ces sous-groupes propres le sont. L'étude des groupes minimaux non- Ω , pour diverses classes de groupes Ω , a fait l'objet de nombreuses publications (voir par exemple, [1-4,6,8] et [10]). En particulier, dans [4] (respectivement, [10]) l'étude des groupes G minimaux non- \mathcal{N} (respectivement, non- $\mathcal{F}\mathcal{N}$) est menée et il est prouvé, parmi de nombreux résultats, que si G est infini et de type fini, alors G/Frat(G) est un groupe simple infini, où \mathcal{N} (respectivement, \mathcal{F}) désigne la classe de tous les groupes nilpotents (respectivement, finis) et Frat(G) est le sous-groupe de Frattini de G. Dans ce qui suit, on obtient un résultat analogue sur les groupes minimaux non- $\mathcal{X}\mathcal{N}$, dans les cas où \mathcal{X} désigne la classe des groupes périodiques ou la classe des groupes localement finis. Plus précisément, on prouvera le résultat suivant :

1631-073X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.02.009

E-mail address: nadir_trabelsi@yahoo.fr.

Théorème 0.1. Soient $c \ge 0$ un entier, \mathcal{N}_c la classe des groupes nilpotents de classe égale au plus à c et \mathcal{X} la classe des groupes de torsion ou la classe des groupes localement finis. Si G est un groupe minimal non- \mathcal{XN} (respectivement, non- \mathcal{XN}_c), alors G est un groupe parfait de type fini qui n'admet pas de sous-groupe propre d'indice fini et tel que G/Frat(G) est un groupe simple infini.

Signalons que les groupes minimaux non- \mathcal{XN} (respectivement non- \mathcal{XN}_c) existent. En effet Ol'shanskii [5] a construit un groupe simple, de type fini et sans torsion, dont tous les sous-groupes propres sont cycliques.

1. Introduction

Let Ω be a class of groups. A group is said to be minimal non- Ω if it is not a Ω -group, while all its proper subgroups belong to Ω . Many results have been obtained on minimal non- Ω , for various classes of groups Ω (see for example, [1–4,6,8] and [10]). In particular, in [4] (respectively, [10]) it is proved, among many results, that if Gis an infinite finitely generated minimal non- \mathcal{N} (respectively, non- $\mathcal{F}\mathcal{N}$) group, then G/Frat(G) is an infinite simple group, where \mathcal{N} (respectively, \mathcal{F}) denotes the class of nilpotent (respectively, finite) groups and Frat(G) is the Frattini subgroup of G. In this note we obtain a similar result on minimal non- $\mathcal{X}\mathcal{N}$ groups, where \mathcal{X} stands for the class of torsion groups or the class of locally finite groups. More precisely, we shall prove the following result:

Theorem 1.1. Let $c \ge 0$ be an integer. Denote by \mathcal{N}_c the class of nilpotent groups of class at most c and by \mathcal{X} the class of torsion groups or the class of locally finite groups. If G is a minimal non- \mathcal{XN} (respectively, non- \mathcal{XN}_c) group, then G is a finitely generated perfect group which has no proper subgroup of finite index and such that G/Frat(G) is an infinite simple group.

Note that minimal non- \mathcal{XN} (respectively, non- \mathcal{XN}_c) groups exist. Indeed, the group constructed by Ol'shanskii [5] is an infinite simple torsion-free finitely generated group whose proper subgroups are cyclic.

2. Proof of Theorem 1.1

Our first lemma is an immediate consequence of [9, Lemma 2.1] but we give a proof to keep our Note reasonably self contained.

Lemma 2.1. Let G be a group whose proper subgroups are in the class XN. Then G belongs to XN if it satisfies one of the following two conditions:

- (i) *G* is finitely generated and has a proper subgroup of finite index,
- (ii) G is not finitely generated.

Proof. (i) Suppose that *G* is finitely generated and let *H* be a proper normal subgroup of finite index in *G*. Then *H* belongs to \mathcal{XN} and it is finitely generated. It follows that $\gamma_{k+1}(H)$ is in \mathcal{X} for some integer $k \ge 0$. Since *H* is of finite index in *G*, $G/\gamma_{k+1}(H)$ is a finitely generated group in the class \mathcal{NF} , so that $G/\gamma_{k+1}(H)$ satisfies the maximal condition on subgroups. It follows that every \mathcal{X} -subgroup of $G/\gamma_{k+1}(H)$ is finite. Consequently, every proper subgroup of $G/\gamma_{k+1}(H)$ is finite-by-nilpotent. Now Lemma 4 of [2] states that a finitely generated locally graded group with finite-by-nilpotent proper subgroups is itself finite-by-nilpotent. Since $G/\gamma_{k+1}(H)$ is clearly locally graded, we deduce that $G/\gamma_{k+1}(H)$ is finite-by-nilpotent, so that *G* belongs to \mathcal{XN} .

(ii) Suppose now that G is not finitely generated and let x, y be two elements of finite order in G. The subgroup $\langle x, y \rangle$, being proper in G, is in \mathcal{XN} . Thus xy^{-1} is of finite order, so G has a torsion subgroup T. As G is not finitely generated, T is locally in \mathcal{XN} , so that T belongs to \mathcal{X} , since it is periodic. If G/T is not finitely generated, then it is locally in \mathcal{XN} ; and since G/T is torsion-free, it is locally nilpotent and its proper subgroups are nilpotent. Now Theorem 2.1 of [8] states that a torsion-free locally nilpotent group with proper nilpotent subgroups is itself nilpotent. Therefore G/T is nilpotent, so that G is an \mathcal{XN} -group. Now if G/T is finitely generated, then there exists a finitely generated subgroup X such that G = XT. Since G is not finitely generated, X is proper in G, so that X belongs

to \mathcal{XN} . We deduce that G/T is in \mathcal{XN} , so that G/T is nilpotent because it is torsion-free. Therefore, G belongs to \mathcal{XN} . \Box

Since finitely generated locally graded groups have proper subgroups of finite index, the previous lemma admits the following consequence:

Corollary 2.2. Let G be a locally graded group whose proper subgroups are in the class \mathcal{XN} . Then G belongs to \mathcal{XN} .

Lemma 2.3. Let G be a group whose proper subgroups are in the class \mathcal{XN} . If G is not perfect, then G belongs to \mathcal{XN} .

Proof. Since G' is a proper subgroup, it is in the class \mathcal{XN} . So G belongs to $\mathcal{X}(\mathcal{NA})$, where A denotes the class of Abelian groups. Therefore there exists a normal \mathcal{X} -subgroup F such that G/F is soluble. By Corollary 2.2, G/F belongs to \mathcal{XN} , so that G is an \mathcal{XN} -group, as claimed. \Box

Lemma 2.4. Let G be a group whose proper subgroups are in the class \mathcal{XN} and let N be a proper normal subgroup of G. If G/N' is an \mathcal{XN} group, then G belongs to \mathcal{XN} .

Proof. Since G/N' belongs to \mathcal{XN} , there is an integer $i \ge 0$ such that $\gamma_{i+1}(G/N')$ is an \mathcal{X} -group. Clearly from Lemma 2.3, we can assume that G' = G, so that (G/N')' = G/N'. Thus $G/N' = \gamma_{i+1}(G/N')$ and hence G/N' belongs to \mathcal{X} . On the other hand N, being proper, belongs to the class \mathcal{XN} . Therefore there exists an integer $k \ge 0$ such that $\gamma_{k+1}(N)$ is in \mathcal{X} . If k = 0 then N is an \mathcal{X} -group. Since G/N' belongs to \mathcal{X} , we deduce that G is in \mathcal{X} . Thus we can suppose that k > 0 and hence $N' \ge \gamma_{k+1}(N)$. Factoring G by $\gamma_{k+1}(N)$, we may assume that N is nilpotent. Let T be the torsion subgroup of N. Then T is an \mathcal{X} -group, so we may further assume without loss of generality that N is torsion-free. Let x be an element of $Z_2(N)$. By considering the homomorphism $f : g \mapsto [g, x]$ from N into Z(N), we see that $N' \le \ker f$, thus $N/\ker f$ is an \mathcal{X} -group and this implies that Im f = [N, x] is in \mathcal{X} . Hence [N, x] = 1 as N is torsion-free. This means that x is an element of Z(N), hence $Z(N) = Z_2(N) = N$, so that N' = 1. Since G/N' belongs to \mathcal{X} , we obtain that G is in \mathcal{X} and, a fortiori, G is in \mathcal{XN} , as required. \Box

Lemma 2.5. Let A and F be two subgroups of a group G such that A is normal and Abelian, F is an \mathcal{X} -group and G = AF. If every proper subgroup of G belongs to \mathcal{XN} , then G is in \mathcal{XN} .

Proof. Let *H* be a proper subgroup of *G*. Then *H* is in the class \mathcal{XN} and therefore it has a torsion subgroup *T* which belongs to \mathcal{X} . Hence H/T is a torsion-free nilpotent group belonging to the class \mathcal{AX} . By Lemma 6.33 of [7], it follows that H/T is Abelian. So that *H* belongs to \mathcal{XA} and therefore every proper subgroup of *G* is in \mathcal{XA} . Factoring *G* by the torsion subgroup of *A*, we may assume that *A* is torsion-free. Clearly, from Lemma 2.3, we may further assume that *G* is perfect. Let *x* be an element in *G*; then $\langle A, x \rangle$ is a proper subgroup of *G*. So that $\langle A, x \rangle$ belongs to \mathcal{XA} . It follows that [A, x] is an \mathcal{X} -group, hence [A, x] = 1 as *A* is normal and torsion-free. Therefore *A* is central in *G* and hence G' = F' is an \mathcal{X} -group. This gives that *G* belongs to \mathcal{XA} , and consequently *G* is in \mathcal{XN} , as claimed. \Box

Lemma 2.6. Let *M* and *N* be two proper subgroups of a group *G* such that *N* is normal and G = MN. If every proper subgroup of *G* belongs to \mathcal{XN} , then *G* is in \mathcal{XN} .

Proof. Clearly we can assume from Lemma 2.3 that *G* is perfect. Since *M* is proper in *G*, it belongs to \mathcal{XN} . Hence $\gamma_{k+1}(M)$ is an \mathcal{X} -group for some integer $k \ge 0$. By using an induction on *k*, we can see that $\gamma_{k+1}(G) = \gamma_{k+1}(MN) \le \gamma_{k+1}(M)N$. For we have that $\gamma_{k+1}(G) = \gamma_{k+1}(MN)$ is generated by commutators of the form $w = [h_1, \ldots, h_{k+1}]$, where each h_i belongs to MN. Put $h_{k+1} = xy$ with *x* in *M* and *y* in *N*, then $w = [h_1, \ldots, h_k, x][h_1, \ldots, h_k, x, y]$ is a product of 3 commutators say w_1, w_2 and w_3 respectively. Since *N* is normal in *G*, w_1 and w_3 are in *N*. Now using the inductive hypothesis we have that $w_2 = [uz, x]$ for some *u* in $\gamma_k(M)$ and some *z* in *N*. So that $w_2 = [u, x][u, x, z][z, x]$ is an element of $\gamma_{k+1}(M)N$, hence *w* belongs to $\gamma_{k+1}(M)N$, hence

 $G/N' = (N/N')(\gamma_{k+1}(M)N'/N')$. Since $\gamma_{k+1}(M)$ is in \mathcal{X} , we have also that $(\gamma_{k+1}(M)N'/N')$ is an \mathcal{X} -group. By Lemma 2.5, it follows that G/N' is in \mathcal{XN} and therefore Lemma 2.4 permits us to conclude that G belongs to \mathcal{XN} , as claimed. \Box

From the previous lemma, we can deduce the following result:

Corollary 2.7. If G is a minimal non- \mathcal{XN} group, then every pair of proper normal subgroups generates a proper subgroup. Moreover, every proper normal subgroup N of G is omissible; that is, HN = G implies H = G for every subgroup H of G.

Proof of Theorem 1.1. (i) Suppose first that *G* is a minimal non- \mathcal{XN} group. From Lemma 2.1 and Lemma 2.3, *G* is a finitely generated perfect group which has no proper subgroup of finite index. So G/Frat(G) is infinite. Suppose that G/Frat(G) is not simple and let *N* be a normal subgroup of *G* such that $Frat(G) \leq N \leq G$. Therefore there is a maximal subgroup *M* of *G* such that $N \leq M$. It follows that G = MN. We deduce, by Corollary 2.7, that G = M, which is a contradiction. Therefore G/Frat(G) is simple.

(ii) Suppose now that G is a minimal non- \mathcal{XN}_c group. If G is an \mathcal{XN} -group, then its torsion subgroup T belongs to \mathcal{X} and G/T is a torsion-free nilpotent group. But a well known result of Zaicev [11] states that an infinite nilpotent group whose proper subgroups are in \mathcal{N}_c is itself in the class \mathcal{N}_c . Thus G/T is in \mathcal{N}_c and hence G belongs to \mathcal{XN}_c , which is a contradiction. So that G is a minimal non- \mathcal{XN} group. It follows from (i) that G is a finitely generated perfect group which has no proper subgroup of finite index and such that G/Frat(G) is an infinite simple group. \Box

References

- [1] A.O. Asar, Nilpotent-by-Chernikov, J. London Math. Soc. 61 (2000) 412-422.
- [2] B. Bruno, R.E. Phillips, On minimal conditions related to Miller–Moreno type groups, Rend. Sem. Mat. Univ. Padova 69 (1983) 153–168.
- [3] S. Franciosi, F. De Giovanni, Y.P. Sysak, Groups with many polycyclic-by-nilpotent subgroups, Ricerche Mat. 48 (1999) 361–378.
- [4] M.F. Newman, J. Wiegold, Groups with many nilpotent subgroups, Arch. Math. 15 (1964) 241-250.
- [5] A.Y. Ol'shanskii, An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 1328–1393.
- [6] J. Otal, J.M. Pena, Minimal non-CC groups, Comm. Algebra 16 (1988) 1231–1242.
- [7] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, 1972.
- [8] H. Smith, Groups with few non-nilpotent subgroups, Glasgow Math. J. 39 (1997) 141-151.
- [9] N. Trabelsi, Locally graded groups with few non-(torsion-by-nilpotent) subgroups, Ischia Group Theory 2006, World Sci. Publ., in press.
- [10] M. Xu, Groups whose proper subgroups are finite-by-nilpotent, Arch. Math. 66 (1996) 353–359.
- [11] D.I. Zaicev, Stably nilpotent groups, Mat. Zametki 2 (1967) 337-346.