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Abstract

We introduce here a new finite volume scheme which was developed for the discretization of anisotropic diffusion problems; the
originality of this scheme lies in the fact that we are able to prove its convergence under very weak assumptions on the discretization
mesh. To cite this article: R. Eymard et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un nouveau schéma volumes finis pour les problèmes de diffusion anisotrope : analyse de convergence. On introduit ici un
nouveau schéma volumes finis, construit pour la discrétisation de problèmes de diffusion anisotrope sur des maillages généraux ;
l’originalité de ce travail réside dans sa preuve de convergence, qui ne nécessite que des hypothèses faibles sur le maillage. Pour
citer cet article : R. Eymard et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The scope of this Note is the discretization by a finite volume method of anisotropic diffusion problems on general
meshes. Let Ω be a polygonal (or polyhedral) open subset of R

d (d = 2 or 3); let Md(R) be the set of d ×d symmetric
matrices. We consider the following elliptic conservation equation:

−div(Λ∇u) = f in Ω, (1)

with boundary condition

u = 0 on ∂Ω (2)

with the following hypotheses on the data:

Λ is a measurable function from Ω to Md(R), and there exist λ and λ̄ such that
0 < λ � λ̄ and Sp(Λ(x)) ⊂ [λ, λ̄] for a.e. x ∈ Ω. The function f is such that f ∈ L2(Ω).

(3)
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In (3), Sp(B) denotes for all B ∈ Md(R) the set of the eigenvalues of B . We consider the following weak formulation
of problem (1):

⎧⎪⎨
⎪⎩

u ∈ H 1
0 (Ω),∫

Ω

Λ(x)∇u(x) · ∇v(x)dx =
∫
Ω

f (x)v(x)dx, ∀v ∈ H 1
0 (Ω). (4)

2. Discrete functional tools

A finite volume discretization of Ω is a triplet D = (M,E,P), where:

– M is a finite family of non-empty convex open disjoint subsets of Ω (the “control volumes”) such that Ω =⋃
K∈M K . For any K ∈M, let ∂K = K \ K be the boundary of K and mK > 0 denote the measure of K .

– E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E , σ is a non-empty
closed subset of a hyperplane of R

d , which has a measure mσ > 0 for the (d − 1)-dimensional measure of σ .
We assume that, for all K ∈ M, there exists a subset EK of E such that ∂K = ⋃

σ∈EK
σ̄ . We then denote by

Mσ = {K ∈ M, σ ∈ EK }. We then assume that, for all σ ∈ E , either Mσ has exactly one element and then
σ ⊂ ∂Ω (boundary edge) or Mσ has exactly two elements (interior edge). For all σ ∈ E , we denote by xσ the
barycenter of σ .

– P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such that xK ∈ K and K is star-shaped
with respect to xK .

The following notations are used. The size of the discretization is defined by: hD = sup{diam(K),K ∈ M}. For all
K ∈ M and σ ∈ EK , we denote for a.e. x ∈ σ by nK,σ the unit vector normal to σ outward to K . We denote by dK,σ

the Euclidean distance between xK and σ . The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext),
that is Eint = {σ ∈ E; σ �⊂ ∂Ω} (resp. Eext = {σ ∈ E; σ ⊂ ∂Ω}). The regularity of the mesh is measured through the
parameter

θD = min

{
min(dK,σ , dL,σ )

max(dK,σ , dL,σ )
, σ ∈ Eint,Mσ = {K,L}

}
.

A family F of discretizations is regular if there exists θ > 0 such that for any D ∈F , θD � θ .
Let XD = R

M × R
E be the set of all u := ((uK)K∈M, (uσ )σ∈E ), and let XD,0 ⊂ XD be defined as the set of

all u ∈ XD such that uσ = 0 for all σ ∈ Eext. The space XD,0 is equipped with a Euclidean structure, defined by the
following inner product:

∀(v,w) ∈ (XD,0)
2, [v,w]D =

∑
K∈M

∑
σ∈EK

mσ

dK,σ

(vσ − vK)(wσ − wK) (5)

and the associated norm: ‖u‖1,D = ([u,u]D)1/2. Let HM(Ω) ⊂ L2(Ω) be the set of piecewise constant functions
on the control volumes on the mesh M which is equipped with the following inner norm: ‖u‖1,M = inf{‖v‖1,D,

v ∈ XD,0, PMv = u}, where for all u ∈ XD , we denote by PMu ∈ HM(Ω) the element defined by the values
(uK)K∈M (we then easily see that this definition of ‖ · ‖1,M coincides with that given in [1] in the case where we set
dKL = dK,σ + dL,σ for all σ ∈ Eint with Mσ = {K,L}). For all ϕ ∈ C(Ω,R), we denote by PD(ϕ) the element of
XD defined by ((ϕ(xK))K∈M, (ϕ(xσ ))σ∈E ).

3. The finite volume scheme and its convergence analysis

The finite volume method is based on the discretization of the balance equation associated to Eq. (1) on cell K . It
requires the definition of consistent numerical fluxes (FD

K,σ )K∈M,σ∈EK
on the edges of the cells, meant to approximate

the diffusion fluxes −Λ∇u · nK , where nK is the unit outward normal to ∂K .
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Let F be a family of finite volume discretizations; for D = (M,E,P) ∈ F , K ∈ M and σ ∈ E , we denote by FD
K,σ

a linear mapping from XD to R
E . The family ((FD

K,σ )K∈M
σ∈E

)D∈F is said to be a consistent family of fluxes if for any

function ϕ ∈ C2(Rd ,R),

lim
hD→0

max
K∈M
σ∈EK

1

mσ

∣∣∣∣FD
K,σ

(
PD(ϕ)

) +
∫
σ

ΛK∇ϕ · nK,σ dγ

∣∣∣∣ = 0, (6)

where ΛK = 1
mK

∫
K

Λdx. In order to get some estimates on the approximate solutions, we need a coercivity property:

the family of numerical fluxes ((FD
K,σ )K∈M

σ∈E
)D∈F is said to be coercive if there exists α > 0 such that, for any

D = (M,E,P) ∈F and for any u ∈ XD,0,∑
K∈M

∑
σ∈EK

(uK − uσ )FD
K,σ (u) � α‖u‖2

1,D. (7)

Finally the family of numerical fluxes ((FD
K,σ )K∈M

σ∈E
)D∈F is said to be symmetric if for any D = (M,E,P) ∈ F ,

the bilinear form defined by

〈u,v〉D =
∑

K∈M

∑
σ∈E

FD
K,σ (u)(vK − vσ ), ∀(u, v) ∈ X2

D,0,

is such that

〈u,v〉D = 〈v,u〉D, ∀(u, v) ∈ X2
D,0.

The finite volume scheme may then be written by approximating the integration of (1) in each control volume, and
requiring that the scheme be conservative:

Find uD = ((
uDK

)
K∈M,

(
uDσ

)
σ∈E

) ∈ XD,0; (8)
∑

σ∈EK

FD
K,σ

(
uD

) =
∫
K

f (x)dx, ∀K ∈ M; (9)

FD
K,σ

(
uD

) + FD
L,σ

(
uD

) = 0, ∀σ ∈ Eint, Mσ = {K,L} (10)

or, in equivalent form:

Find uD = ((
uDK

)
K∈M,

(
uDσ

)
σ∈E

) ∈ XD,0 s.t.
〈
uD, v

〉
D =

∫
Ω

f (x)PMv(x)dx, ∀v ∈ XD,0. (11)

Theorem 3.1. Under assumptions (3), let u be the unique solution to (4). Consider a regular family of admissible
meshes F , along with a family of consistent, coercive and symmetric fluxes ((FD

K,σ )K∈M
σ∈E

)D∈F . Then, for all D ∈F ,

there exists a unique uD ∈ XD,0 solution to (9) or (11), and PMuD converges to u, solution of (4) in Lq(Ω), for
all q ∈ [1,+∞) if d = 2 and all q ∈ [1,2d/(d − 2)) if d > 2, as hD → 0. Moreover, ∇DuD ∈ HM(Ω)d , defined by
mK(∇DuD)K = ∑

σ∈EK
mσ (uσ − uK)nK,σ for all K ∈M, converges to ∇u in L2(Ω)d .

Sketch of proof. Taking v = uD in (11), we get the following a priori estimate on uD:

α
∥∥uD

∥∥2
1,D � ‖f ‖L2(Ω)‖uD‖L2(Ω).

The discrete Sobolev inequality [1] holds thanks to the above definition of θD , that is, there exists C > 0 depending
only on q,Ω and θ such that: ‖PMuD‖Lq(Ω) � C‖PMuD‖1,M. Therefore, thanks to the fact that ‖PMuD‖1,M �
‖uD‖1,D , we obtain that: ‖PMuD‖1,M � ‖uD‖1,D � C

α
‖f ‖L2(Ω), which yields the existence and uniqueness of uD .

Then, prolonging by 0 the function PMuD outside of Ω , we get the estimate∥∥PMuD(· + ξ) − PMuD
∥∥

1 d � |ξ |(d m(Ω)
)1/2∥∥uD

∥∥ , ∀ξ ∈ R
d .
L (R ) 1,D
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We can therefore apply the Fréchet–Kolmogorov theorem, which is a compactness criterion in L1(Rd). Again using
the discrete Sobolev inequality, we get that, up to a subsequence, PMuD converges, for all q ∈ [1,+∞) if d = 2 and
all q ∈ [1,2d/(d − 2)) if d > 2, in Lq(Rd) to some function ũ, with ũ(x) = 0 for a.e. x ∈ R

d \Ω . Furthermore, in the
spirit of Lemma 2 of [4], we can show that ∇DuD converges to ∇ũ weakly in L2(Rd)d . Therefore ũ ∈ H 1

0 (Ω). To
complete the proof of the theorem, we pass to the limit hD → 0 on the weak form of the scheme: for ϕ ∈ C∞

c (Ω), we
take v = PD(ϕ) in (11). Using the symmetry and the consistency (6) of the fluxes FD

K,σ (ϕ), we obtain that ũ verifies

(4) with v = ϕ. Therefore, by uniqueness, ũ = u and the whole sequence converges. The strong convergence of ∇DuD

to ∇u is obtained, using (7), the convergence of 〈uD, uD〉D to
∫
Ω

∇u · Λ∇udx and following the principles of the
proof of Lemma 2.6 in [5]. �
4. An example of consistent, coercive and symmetric family of fluxes

Let us first note that the case of the classical four point finite volume schemes on triangles (also based on a
consistent coercive and symmetric family of fluxes, see [6]) is included in the framework presented here. However,
for general meshes or anisotropic diffusion operators, the construction of an approximation to the normal flux is more
strenuous [2,3,7]; it is often performed by the reconstruction of a discrete gradient, either in the edges of the cell, or
in the cell itself. We propose the following numerical fluxes, defined for u ∈ XD by

FK,σ (u) = −mσ

(
∇DuK · ΛKnK,σ + αK

(
RK,σ (u)

dK,σ

−
∑

σ ′∈EK

mσ ′
RK,σ ′(u)

dK,σ ′
(xσ ′ − xK) · nK,σ

mK

))

where ΛK is the mean value of the matrix Λ(x) for x ∈ K , ∇DuK is defined in Theorem 3.1, RK,σ (u) = uσ − uK −
∇DuK.(xσ − xK), and (αK)K∈M is any family of strictly positive real numbers, bounded by above and below. We
thus get a consistent, coercive and symmetric family of fluxes, in the above stated sense. In fact, in the same spirit
as in the scheme derived in [5] for meshes satisfying an orthogonality condition, the above expression for FK,σ (u) is
deduced from the variational form of the scheme, which is based on the following inner product:

〈u,v〉D =
∑

K∈M

[
mK∇DuK · ΛK∇DvK + αK

∑
σ∈EK

mσ

dK,σ

RK,σ (u)RK,σ (v)

]
, ∀u,v ∈ XD,0.
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