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Abstract

In this Note we prove that, if the coefficient g = g(t, y, z) of a one-dimensional BSDE is assumed to be continuous and of linear
growth in (y, z), then there exists either one or uncountably many solutions. To cite this article: G. Jia, S. Peng, C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur l’ensemble des solutions d’une équation différentielle stochastique rétrograde avec coefficient continu. Nous prouvons
dans cette Note que, si le coefficient g = g(t, y, z) d’une EDSR est continu et linéairement croissant en (y, z), alors il existe soit
une seule solution soit une infinité non dénombrable de solutions. Pour citer cet article : G. Jia, S. Peng, C. R. Acad. Sci. Paris,
Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following one-dimensional backward stochastic differential equation:

yt = ξ +
T∫

t

g(s, ys, zs)ds −
T∫

t

zs dWs, t ∈ [0, T ], (1)

where the terminal condition ξ and the coefficient g = g(t, y, z) are given. W is a d-dimensional Brownian motion.
The solution (yt , zt )t∈[0,T ] is a pair of square integrable processes. An interesting problem is: how many solutions
does this BSDE have? In the standard situation where g satisfies linear growth condition and the Lipschitz condition
in (y, z), it was proved by Pardoux and Peng [4] that there exists a unique solution. However in the case where g is
only continuous in (y, z) without the Lipschitz restriction, Lepeltier and San Martin [3] have proved that there exists
at least one solution. For more information about existence and uniqueness of BSDE, the reader can refer to [1] for
discussions therein.

In this Note we will prove that if the coefficient g satisfies the conditions given in [3], then BSDE (1) has either
one or uncountably many solutions. Our result also shows the structure of those solutions.
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2. The result and proof

Let (Ω,F ,P ) be a probability space and (Wt)t�0 be a d-dimensional standard Brownian motion on this space.
Let (Ft )t�0 be the filtration generated by this Brownian motion: Ft = σ {Ws, s ∈ [0, t]} ∪N , F = (Ft )t�0, where N
is the set of all P -null subsets.

Let T > 0 be a fixed real number. In this Note, we always work in the space (Ω,FT ,P ). For a positive integer n

and z ∈ R
n, we denote by |z| the Euclidean norm of z.

We will denote by H2
n = H2

n(0, T ;R
n), the space of all F-progressively measurable R

n-valued processes such that

E[∫ T

0 |ψt |2 dt] < ∞, and by S2 = S2(0, T ;R) the elements in H2
n(0, T ;R) with continuous paths such that

E
[

sup
t∈[0,T ]

|ψt |2
]

< ∞.

The coefficient g of BSDE is a function g(ω, t, y, z) : Ω ×[0, T ]× R × R
d → R satisfying the following assump-

tions:

(H1): linear growth: ∃K < ∞, s.t. |g(ω, t, y, z)| � K(1 + |y| + |z|), ∀t,ω, y, z,
(H2): (g(t, y, z))t∈[0,T ] ∈ H2

1, ∀(y, z) ∈ R × R
d ,

(H3): for fixed t,ω,g(ω, t, · , ·) is continuous.

By Lepeltier and San Martin [3, Th. 1], under (H1)–(H3) and for each given ξ ∈ L2(Ω,FT ,P ), there exists at least
one solution (yt , zt )t∈[0,T ] ∈ S2 ×H2

d of BSDE (1). [3] gives also the existence of the maximal solution (ȳt , z̄t )t∈[0,T ]
and the minimal solution ( y

t
, z

t
)t∈[0,T ] of BSDE (1) in the sense that any solution (yt , zt )t∈[0,T ] ∈ S2 ×H2

d of BSDE
(1) must satisfy y

t
� yt � ȳt , a.s., for all t ∈ [0, T ].

Theorem 2.1. We assume (H1)–(H3). Let (y
t
, z

t
)t∈[0,T ] ∈ S2 × H2

d and (ȳt , z̄t )t∈[0,T ] ∈ S2 × H2
d be the minimal

and maximal solution of BSDE (1) with the terminal condition ξ ∈ L2(Ω,FT ,P ). Then for each t0 ∈ [0, T ] and
η ∈ L2(Ω,Ft0,P ) such that

y
t0

� η � ȳt0, a.s.,

there exists at least one solution (yt , zt )t∈[0,T ] ∈ S2 ×H2
d of BSDE (1) satisfying

yt0 = η, a.s.

Proof. Let (y1
t , z1

t )t∈[0,t0] ∈ S2(0, t0) ×H2
d(0, t0;R

d) be a solution of the following BSDE

y1
t = η +

t0∫
t

g
(
s, y1

s , z1
s

)
ds −

T∫
t

z1
s dWs, t ∈ [0, t0]

and, for a fixed z2 ∈H2
d(t0, T ;R

d), let (y2
t )t∈[t0,T ] be a (strong) solution of the SDE

y2
t = η −

t∫
t0

g
(
s, y2

s , z2
s

)
ds +

t∫
t0

z2
s dWs, t ∈ [t0, T ].

We define a stopping time τ = inf{t � t0, y2
t /∈ ( y

t
, ȳt )}. By y

T
= ȳT , we know that τ � T . Now we define on [0, T ]

(yt , zt ) = I[0,t0)(t)
(
y1
t , z1

t

) + I[t0,τ )(t)
(
y2
t , z2

t

) + I[τ,T ](t)(ȳt , z̄t )I{yτ =ȳτ } + I[τ,T ](t)( y
t
, z

t
)I{yτ <ȳτ }.

One can easily check that (yt , zt )t∈[0,T ] ∈ S2(0, T ) × H2
d(0, T ;R

d) and is a solution of BSDE (1) with yT = ξ and
yt0 = η. �
Remark 1. The linear growth assumption (H1) can be replaced by a quadratic growth assumption of type given in [2].
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Remark 2. Indeed, when BSDE (1) has uncountably many solutions, the cardinality of the associated solution set is
at least continuum since we can take η = αy

t0
+ (1 − α)ȳt0 for each α ∈ [0,1].
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