Probability Theory

On the set of solutions of a BSDE with continuous coefficient

Guangyan Jia, Shige Peng
School of Mathematics and System Sciences, Shandong University, Jinan, Shandong, 250100, PR China
Received 9 April 2006; accepted after revision 25 January 2007
Available online 26 February 2007
Presented by Paul Malliavin

Abstract

In this Note we prove that, if the coefficient $g=g(t, y, z)$ of a one-dimensional BSDE is assumed to be continuous and of linear growth in (y, z), then there exists either one or uncountably many solutions. To cite this article: G. Jia, S. Peng, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur l'ensemble des solutions d'une équation différentielle stochastique rétrograde avec coefficient continu. Nous prouvons dans cette Note que, si le coefficient $g=g(t, y, z)$ d'une EDSR est continu et linéairement croissant en (y, z), alors il existe soit une seule solution soit une infinité non dénombrable de solutions. Pour citer cet article : G. Jia, S. Peng, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following one-dimensional backward stochastic differential equation:

$$
\begin{equation*}
y_{t}=\xi+\int_{t}^{T} g\left(s, y_{s}, z_{s}\right) \mathrm{d} s-\int_{t}^{T} z_{s} \mathrm{~d} W_{s}, \quad t \in[0, T], \tag{1}
\end{equation*}
$$

where the terminal condition ξ and the coefficient $g=g(t, y, z)$ are given. W is a d-dimensional Brownian motion. The solution $\left(y_{t}, z_{t}\right)_{t \in[0, T]}$ is a pair of square integrable processes. An interesting problem is: how many solutions does this BSDE have? In the standard situation where g satisfies linear growth condition and the Lipschitz condition in (y, z), it was proved by Pardoux and Peng [4] that there exists a unique solution. However in the case where g is only continuous in (y, z) without the Lipschitz restriction, Lepeltier and San Martin [3] have proved that there exists at least one solution. For more information about existence and uniqueness of BSDE, the reader can refer to [1] for discussions therein.

In this Note we will prove that if the coefficient g satisfies the conditions given in [3], then BSDE (1) has either one or uncountably many solutions. Our result also shows the structure of those solutions.

[^0]
2. The result and proof

Let (Ω, \mathcal{F}, P) be a probability space and $\left(W_{t}\right)_{t \geqslant 0}$ be a d-dimensional standard Brownian motion on this space. Let $\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$ be the filtration generated by this Brownian motion: $\mathcal{F}_{t}=\sigma\left\{W_{s}, s \in[0, t]\right\} \cup \mathcal{N}, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$, where \mathcal{N} is the set of all P-null subsets.

Let $T>0$ be a fixed real number. In this Note, we always work in the space $\left(\Omega, \mathcal{F}_{T}, P\right)$. For a positive integer n and $z \in \mathbb{R}^{n}$, we denote by $|z|$ the Euclidean norm of z.

We will denote by $\mathcal{H}_{n}^{2}=\mathcal{H}_{n}^{2}\left(0, T ; \mathbb{R}^{n}\right)$, the space of all \mathbb{F}-progressively measurable \mathbb{R}^{n}-valued processes such that $E\left[\int_{0}^{T}\left|\psi_{t}\right|^{2} \mathrm{~d} t\right]<\infty$, and by $\mathcal{S}^{2}=\mathcal{S}^{2}(0, T ; \mathbb{R})$ the elements in $\mathcal{H}_{n}^{2}(0, T ; \mathbb{R})$ with continuous paths such that

$$
E\left[\sup _{t \in[0, T]}\left|\psi_{t}\right|^{2}\right]<\infty
$$

The coefficient g of BSDE is a function $g(\omega, t, y, z): \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfying the following assumptions:
(H1): linear growth: $\exists K<\infty$, s.t. $|g(\omega, t, y, z)| \leqslant K(1+|y|+|z|), \forall t, \omega, y, z$,
(H2): $(g(t, y, z))_{t \in[0, T]} \in \mathcal{H}_{1}^{2}, \forall(y, z) \in \mathbb{R} \times \mathbb{R}^{d}$,
(H3): for fixed $t, \omega, g(\omega, t, \cdot, \cdot)$ is continuous.
By Lepeltier and San Martin [3, Th. 1], under (H1)-(H3) and for each given $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$, there exists at least one solution $\left(y_{t}, z_{t}\right)_{t \in[0, T]} \in \mathcal{S}^{2} \times \mathcal{H}_{d}^{2}$ of BSDE (1). [3] gives also the existence of the maximal solution $\left(\bar{y}_{t}, \bar{z}_{t}\right)_{t \in[0, T]}$ and the minimal solution $\left(\underline{y}_{t}, \underline{z}_{t}\right)_{t \in[0, T]}$ of BSDE (1) in the sense that any solution $\left(y_{t}, z_{t}\right)_{t \in[0, T]} \in \mathcal{S}^{2} \times \mathcal{H}_{d}^{2}$ of BSDE (1) must satisfy $\underline{y}_{t} \leqslant y_{t} \leqslant \overline{\bar{y}}_{t}$, a.s., for all $t \in[0, T]$.

Theorem 2.1. We assume (H1)-(H3). Let $\left(\underline{y}_{t}, \underline{z}_{t}\right)_{t \in[0, T]} \in \mathcal{S}^{2} \times \mathcal{H}_{d}^{2}$ and $\left(\bar{y}_{t}, \bar{z}_{t}\right)_{t \in[0, T]} \in \mathcal{S}^{2} \times \mathcal{H}_{d}^{2}$ be the minimal and maximal solution of BSDE (1) with the terminal condition $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$. Then for each $t_{0} \in[0, T]$ and $\eta \in L^{2}\left(\Omega, \mathcal{F}_{t_{0}}, P\right)$ such that

$$
\underline{y}_{t_{0}} \leqslant \eta \leqslant \bar{y}_{t_{0}}, \quad \text { a.s. }
$$

there exists at least one solution $\left(y_{t}, z_{t}\right)_{t \in[0, T]} \in \mathcal{S}^{2} \times \mathcal{H}_{d}^{2}$ of BSDE (1) satisfying

$$
y_{t_{0}}=\eta, \quad a . s .
$$

Proof. Let $\left(y_{t}^{1}, z_{t}^{1}\right)_{t \in\left[0, t_{0}\right]} \in \mathcal{S}^{2}\left(0, t_{0}\right) \times \mathcal{H}_{d}^{2}\left(0, t_{0} ; \mathbb{R}^{d}\right)$ be a solution of the following BSDE

$$
y_{t}^{1}=\eta+\int_{t}^{t_{0}} g\left(s, y_{s}^{1}, z_{s}^{1}\right) \mathrm{d} s-\int_{t}^{T} z_{s}^{1} \mathrm{~d} W_{s}, \quad t \in\left[0, t_{0}\right]
$$

and, for a fixed $z^{2} \in \mathcal{H}_{d}^{2}\left(t_{0}, T ; \mathbb{R}^{d}\right)$, let $\left(y_{t}^{2}\right)_{t \in\left[t_{0}, T\right]}$ be a (strong) solution of the SDE

$$
y_{t}^{2}=\eta-\int_{t_{0}}^{t} g\left(s, y_{s}^{2}, z_{s}^{2}\right) \mathrm{d} s+\int_{t_{0}}^{t} z_{s}^{2} \mathrm{~d} W_{s}, \quad t \in\left[t_{0}, T\right]
$$

We define a stopping time $\tau=\inf \left\{t \geqslant t_{0}, y_{t}^{2} \notin\left(\underline{y}_{t}, \bar{y}_{t}\right)\right\}$. By $\underline{y}_{T}=\bar{y}_{T}$, we know that $\tau \leqslant T$. Now we define on $[0, T]$

$$
\left(y_{t}, z_{t}\right)=\mathbb{I}_{\left[0, t_{0}\right)}(t)\left(y_{t}^{1}, z_{t}^{1}\right)+\mathbb{I}_{\left[t_{0}, \tau\right)}(t)\left(y_{t}^{2}, z_{t}^{2}\right)+\mathbb{I}_{[\tau, T]}(t)\left(\bar{y}_{t}, \bar{z}_{t}\right) \mathbb{I}_{\left\{y_{t}=\bar{y}_{t}\right\}}+\mathbb{I}_{[\tau, T]}(t)\left(\underline{y}_{t}, \underline{z}_{t}\right) \mathbb{I}_{\left\{y_{\tau}<\bar{y}_{t}\right\}} .
$$

One can easily check that $\left(y_{t}, z_{t}\right)_{t \in[0, T]} \in \mathcal{S}^{2}(0, T) \times \mathcal{H}_{d}^{2}\left(0, T ; \mathbb{R}^{d}\right)$ and is a solution of BSDE (1) with $y_{T}=\xi$ and $y_{t_{0}}=\eta$.

Remark 1. The linear growth assumption (H1) can be replaced by a quadratic growth assumption of type given in [2].

Remark 2. Indeed, when BSDE (1) has uncountably many solutions, the cardinality of the associated solution set is at least continuum since we can take $\eta=\alpha \underline{y}_{t_{0}}+(1-\alpha) \bar{y}_{t_{0}}$ for each $\alpha \in[0,1]$.

References

[1] Ph. Briand, B. Delyon, Y. Hu, E. Pardoux, L. Stoica, L^{p} solutions of backward stochastic differential equations, Stochastic Process. Appl. 108 (2003) 109-129.
[2] M. Kobylanski, Backward stochastic differential equations and partial differential equation with quadratic growth, Ann. Probab. 28 (2000) 259-276.
[3] J.P. Lepeltier, J.S. Martin, Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett. 34 (1997) 425-430.
[4] E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation, System Control Lett. 14 (1990) 55-61.

[^0]: The authors thank the NSF of China for partial support under grant No. 10131040 and grant No. 10671111.
 E-mail addresses: jiagy@sdu.edu.cn (G. Jia), peng@ sdu.edu.cn (S. Peng).

