Differential Geometry

Elliptic genera of level N on complex π_2-finite manifolds

Rafael Herrera 1

Centro de Investigación en Matemáticas, A.P. 402, Guanajuato, Gto., C.P. 36000, Mexico

Received 27 June 2006; accepted after revision 22 January 2007

Abstract

We prove the rigidity of the elliptic genera of level N on complex manifolds with finite second homotopy group admitting circle actions, and the vanishing of the Hilbert polynomial of its canonical bundle. To cite this article: R. Herrera, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

1. Introduction

The elliptic genus was introduced by Ochanine [6] and re-interpreted by Witten [8], who conjectured its rigidity under circle actions on spin manifolds. The rigidity of the elliptic genus was proved by Taubes [7], Bott and Taubes [1], etc., and was generalized to non-spin manifolds with finite second homotopy group in [3]. Furthermore, Witten and Hirzebruch proposed independently a complex version of the genus in the form of the elliptic genus of level $N > 0$ for complex manifolds with $c_1 \equiv 0 \pmod{N}$ and conjectured its rigidity [9], which was proved by Hirzebruch [4], Krichever [5], etc. In this note, we prove the rigidity of the elliptic genus of level N on π_2-finite complex manifolds M for all $N > 0$ (see Theorem 2.1), which in turn implies the vanishing of the Hilbert polynomial $\chi(M, K^k) = 0$ for all k, where K denotes the canonical bundle of M (see Corollary 3.1).

The note is organized as follows: in Section 2 we give the definition of the elliptic genus of level N and state the Rigidity Theorem 2.1, and in Section 3 we sketch its proof.

1 Partially supported by a JSPS Research Fellowship PE-05030, PSC-CUNY award #67300-00-36, Convenio CONCYTEG 05-02-K117-112, and Apoyo CONACYT J48320-F.

E-mail address: rherrera@cimat.mx.
2. Rigidity of the elliptic genera of level \(N\)

Let \(M\) be a \(d\)-dimensional compact manifold and \(T\) its holomorphic tangent bundle. The elliptic genus of level \(N\) defined by Witten has the following \(q\)-development in the standard cusp of \(\Gamma_1(N) \subset SL_2(\mathbb{Z})\), which we shall take as its definition

\[
\tilde{\phi}_N(M) = \sum_{j=0}^{\infty} \chi_y(M, R_j)q^j,
\]

where \(-y = \zeta = e^{2\pi i/N}\), and the \(R_j\) denote virtual vector bundles with coefficients in \(\mathbb{Z}[\zeta]\) arising from the following infinite product

\[
R(q, T) = \sum_{j=0}^{\infty} R_j q^j = \bigotimes_{j=1}^{\infty} yq^j \bigotimes_{j=1}^{\infty} S q^j (T + T^*),
\]

where

\[
\bigotimes_t(W) = \sum_{j=0}^{\text{rk}(W)} \bigotimes_j W \cdot t^j \quad \text{and} \quad S_t(W) = \sum_{j=0}^{\infty} S^j W \cdot t^j
\]

denote the sums of exterior and symmetric powers of a vector bundle \(W\), respectively. The first two terms are

\[
R_0 = 1, \quad R_1 = (1 - \zeta)T^* + (1 - \zeta^{-1})T.
\]

Thus we can see that this \(q\)-development has integral coefficients. The first term of \(\tilde{\phi}(M)\) is \(\chi_y(M)\).

The \(q\)-developments at other cusps, however, have coefficients which are not necessarily integral. Such coefficients are of the form \(\chi(M, K k/N \otimes W_n)\) for some virtual vector bundle \(W_n\), and the non-integrality may happen due to \(K\) not necessarily admitting an \(N\)-th root. For instance, the first term of the expansion at a cusp of the form \(2\pi i k\tau/N\) for \(1 \leq k \leq N\) is

\[
\frac{1}{\tilde{q}^{k(N-k)d/2N}} \chi(M, K^{k/N}),
\]

where \(\tilde{q}\) is a uniformizing parameter for this cusp (\(\tilde{q}^N = q\)).

If we assume that \(M\) admits a holomorphic \(S^1\)-action, there is an induced action on the bundles \(R_j\) and on the cohomology groups \(H^p(M, \bigotimes^p T^* \otimes R_j)\). Thus, the traces of such action on the cohomology groups produce the \(S^1\)-character \(\chi(M, \bigotimes^p T^* \otimes R_j, \lambda)\), where \(\lambda \in S^1\), so that

\[
\chi_y(M, R_j, \lambda) = \sum_{p=0}^{d} \chi(M, \bigotimes^p T^* \otimes R_j, \lambda) y^p, \quad \tilde{\phi}(M, \lambda) = \sum_{j=0}^{\infty} \chi_y(M, R_j, \lambda)q^j.
\]

The rigidity of the elliptic genus for the \(S^1\)-action means that the finite Laurent series \(\chi(M, R_j, \lambda)\) does not depend on \(\lambda\) and, therefore, \(\tilde{\phi}(M, \lambda)\) is constant in that variable. Thus, we can now state the rigidity theorem:

Theorem 2.1. Let \(M\) be a compact complex manifold with finite second homotopy group, and admitting a non-trivial holomorphic \(S^1\)-action. Then, the equivariant elliptic genus \(\tilde{\phi}_N(M, \lambda)\) does not depend on \(\lambda \in S^1\), i.e.

\[
\tilde{\phi}_N(M, \lambda) = \tilde{\phi}_N(M).
\]

3. Sketch of proof

Hirzebruch’s proof of the rigidity theorem [4] for the elliptic genus of level \(N\) considers a normalized version, applies the Atiyah–Bott–Singer fixed point theorem (holomorphic Lefschetz theorem) and examines the behaviour of the resulting meromorphic expressions. The normalized elliptic genus is

\[
\varphi(M, \lambda) = \frac{\tilde{\phi}(M, \lambda)}{Y(-\alpha)d} = \sum_{j=0}^{\infty} \chi_y(M, S_j, \lambda)q^j.
\]
where \(S_j \) are virtual vector bundles with coefficients in \(\mathbb{Q}(\zeta) \),
\[
Y(x) = (1 - e^{-x}) \prod_{j=1}^{\infty} \frac{(1 - q^j e^{-x})(1 - q^j e^x)}{1 - q^j},
\]
\(\alpha = 2\pi i / N \). By applying the Atiyah–Singer–Bott fixed point theorem
\[
\varphi(M, \lambda) = \sum_{v} \varphi_N(M, \lambda)_v,
\]
where \(v \) is an index for the connected components \(M^S_1 \) of \(M^S \),
\[
\varphi_N(M, \lambda)_v = \langle e_0 \cdot F(x_1 + 2\pi im_1 z) \cdots F(x_d + 2\pi im_d z), [M^S_1] \rangle
\]
e\(0 \) is the Euler class of \(M^S_1 \), \(F(x) = Y(x - \alpha)/(Y(x)Y(-\alpha)) \), the \(m_i \) are the exponents of the infinitesimal action of \(S^1 \) on \(T|_{M^S_1} = L^{m_1} \oplus \cdots \oplus L^{m_d} \), and \(x_i \) is the formal root of each one of the lines into which \(T \) splits.

If the first Chern class of \(M \) is divisible by \(N \) then

(i) \(\varphi_N(M, \lambda) \) is elliptic with respect to a certain lattice;
(ii) \(\varphi_N(M, \lambda) \) has no poles, which implies it is holomorphic and, therefore, constant in \(\lambda \).

For (i), what is really needed is the \(S^1 \)-action to be \(N \)-balanced. A circle action is called \(N \)-balanced if the residue class of the sum
\[
m_1 + \cdots + m_d \pmod{N}
\]
does not depend on the connected component \(M^S_1 \). The common residue is called the type \(t \) of the \(S^1 \)-action.

Theorem 3.1. [4, p. 179] For an \(N \)-balanced \(S^1 \)-action of type \(t \) on the complex manifold \(M \), the equivariant elliptic genus \(\varphi_N(M, \lambda) \), with \(\lambda = e^{2\pi i z} \), is an elliptic function for the lattice \(\mathbb{Z} \cdot N \tau + \mathbb{Z} \) which satisfies
\[
\varphi_N(M, \lambda q) = \zeta^t \varphi_N(M, \lambda), \quad (\zeta = e^{2\pi i/N}).
\]

For (ii), we have to consider the sums
\[
\psi(\lambda) = \sum_{M^S_1 \subset X} \varphi_N(M, \lambda)_v
\]
for those \(M^S_1 \) contained in a given connected component \(X \) of the fixed point set \(M^{Z_m} \), \(Z_m \subset S^1 \), for every \(m \in \mathbb{Z} \). Hirzebruch determined that \(\psi(\lambda, q^{s/m}) \), for any integer \(s \), has no poles on the unit circle as long as the residues
\[
\sum_{i=1}^{d} \left[\frac{m_i}{m} \right] \pmod{mN}
\]
are all equal. In this way, \(\varphi_N(M, \lambda) \) has no poles at all and the rigidity theorem follows if \(c_1(M) \equiv 0 \pmod{N} \)
\[
\varphi_N(M, \lambda)_v = \varphi_N(M).
\]

However, conditions (i) and (ii) on the \(S^1 \)-action are also fulfilled by actions on complex manifolds with finite second homotopy group. Consider the \(S^1 \)-decompositions of the tangent space at two distinct \(S^1 \)-fixed points \(p \) and \(p' \) in terms of generator \(L \cong \mathbb{C} \) of the representation ring \(R(S^1) \)
\[
T_p M = L^{m_1} \oplus \cdots \oplus L^{m_d}, \quad T_{p'} M = L^{m'_1} \oplus \cdots \oplus L^{m'_d},
\]
where \(m_i \) and \(m'_i \) are the exponents of the \(S^1 \) action at \(p \) and \(p' \), respectively. By [2], the virtual representation \(T_p - T_{p'} \) can be factored as follows
\[
T_p - T_{p'} = (1 - L)^2 \otimes \left(\bigoplus_j b_j L^j \right).
\]
where the set \(\{ b_j \in \mathbb{Z} \} \) is finite. Thus
\[
\sum_{i=1}^{d} m_i - \sum_{i=1}^{d} m'_i = \sum_j b_j \cdot j - 2 \sum_j b_j \cdot (j + 1) + \sum_j b_j \cdot (j + 2) = 0.
\]
Hence, conditions (i) and (ii) hold, and the Rigidity Theorem follows.

As a consequence, we see that
\[
\varphi_N(M) = \varphi_N(M, \lambda q) = \zeta^t \varphi_N(M, \lambda) = \zeta^t \varphi_N(M),
\]
so that, if the \(S^1 \)-action has type \(t \neq 0 \) then
\[
\varphi_N(M) \equiv 0 \quad \text{and} \quad \tilde{\varphi}_N(M) \equiv 0.
\]

On the other hand, the Rigidity Theorem readily implies that the not necessarily integral characteristic numbers
\[
\chi(M, K^k) = 0
\]
for \(k = 1, \ldots, N - 1 \), as in [4]. Since we have imposed no divisibility condition on the first Chern class of \(M \), these vanishings hold for any \(N \). Thus, the Hilbert polynomial \(\chi(M, K^k) \) has infinitely many zeroes and is, therefore, identically zero.

Corollary 3.1. Let \(M \) be a compact complex manifold with finite second homotopy group, and admitting a non-trivial holomorphic \(S^1 \)-action. Then
\[
\chi(M, K^k) = 0 \quad \text{for all } k.
\]
In particular, the Todd genus vanishes, \(\text{Todd}(M) = 0 \).

Hence, the Todd genus is an obstruction to the existence of holomorphic circle actions on \(\pi_2 \)-finite compact complex manifolds.

Acknowledgement

The author wishes to thank the Max Planck Institute for Mathematics (Bonn) for its hospitality and support.

References