

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 291-294

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Mathematical Analysis

Supremum over inverse image of functions in the Bloch space

Julio C. Ramos Fernández

Departamento de Matemática, Universidad de Oriente, 6101 Cumaná, Edo. Sucre, Venezuela

Received 10 November 2006; accepted 16 January 2007

Available online 12 February 2007

Presented by Jean-Pierre Kahane

Abstract

We will prove that for certain classes of functions f in the α -Bloch space \mathcal{B}^{α} such that f(0) = 0, the \mathcal{B}^{α} norm is obtained taking supremum over $f^{-1}(\Sigma_{\varepsilon})$, where $\Sigma_{\varepsilon} = \{z: |\arg z| < \varepsilon\}$. To cite this article: J.C. Ramos Fernández, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La borne supérieure de l'image inverse de fonctions dans l'espace de Bloch. Nous démontrerons que pour certaines classes de fonctions f dans l'espace α -Bloch \mathcal{B}^{α} et telles que f(0) = 0, la norme \mathcal{B}^{α} s'obtient comme la borne supérieure sur $f^{-1}(\Sigma_{\varepsilon})$, où $\Sigma_{\varepsilon} = \{z: |\arg z| < \varepsilon\}$. Pour citer cet article : J.C. Ramos Fernández, C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathbb{D} be the unit disk in the complex plane. A function f is called α -Bloch function if it is analytic on \mathbb{D} and $||f||_{\alpha} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty$. This defines a seminorm, and the α -Bloch functions form a complex Banach space \mathcal{B}^{α} with the norm $||f||_{\mathcal{B}^{\alpha}} = |f(0)| + ||f||_{\alpha}$.

When $\alpha = 1$ we get back the classical Bloch space \mathcal{B} and it is known that \mathcal{B} is conformally invariant in the sense that if $a \in \mathbb{D}$, then $||f \circ \varphi_a||_1 = ||f||_1$, where φ_a is a Möbius transformation from the unit disk onto itself; that is, $\varphi_a(z) = (a - z)/(1 - \bar{a}z), z \in \mathbb{D}$.

In this Note, we are interested in knowing if, given $\varepsilon > 0$ and $\alpha > -1$, we can find a constant $\delta > 0$, depending only on α and ε , such that

$$\sup_{z\in f^{-1}(\Sigma_{\varepsilon})} \left(1 - |z|^2\right)^{\alpha} \left| f'(z) \right| \ge \delta \|f\|_{\alpha},\tag{1}$$

for all functions $f \in \mathcal{B}^{\alpha}$ satisfying f(0) = 0, where $\Sigma_{\varepsilon} = \{w \in \mathbb{C} : |\arg(w)| < \varepsilon\}$.

E-mail address: joramos@ull.es.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.01.013

This question was suggested by an article of D. Marshall and W. Smith [3] where they analyze a problem of this type for functions in the classic Bergman's space (without weight) A^p . The principal result of [3, Theorem 1.1] ensures that for all $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \left| f(z) \right| dA(z) > \delta \int_{\mathbb{D}} \left| f(z) \right| dA(z),$$
(2)

for any univalent function in A^1 fixing the origin, where dA(z) is the two-dimensional Lebesgue measure on \mathbb{D} . It is an open problem to show whether their result still holds if the hypothesis that f is univalent were omitted.

Pérez-González and Ramos [4] have extended the results of Marshall and Smith to the widest class of weighted Bergman space A_{α}^{p} when $\alpha > 2p - 1$ and p > 1. Recently, in [1] the authors showed that an estimate like (2) is not possible for the Besov space $B_{p} = B_{p}(\mathbb{D})$, with p > 1, where an holomorphic functions f on \mathbb{D} belongs to B_{p} if

$$\|f\|_{B_p}^p = \int_{\mathbb{D}} \left(1 - |z|^2\right)^{p-2} \left|f'(z)\right|^p \mathrm{d}A(z) < \infty.$$

However, they showed that for any p > 1 and $\varepsilon > 0$, there exists a constant K > 0 depending only on p such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \left(1 - |z|^2\right)^{p-2} \left| f'(z) \right|^p \mathrm{d}A(z) \ge K(p)\varepsilon \frac{|f'(0)|^{p+4}}{\|f\|_{B_p}^4},$$

for any nonnull function $f \in B_p$ with f(0) = 0.

In this Note, we get a similar result for the α -Bloch space. We will show that if $\alpha = 1$, then the inequality (1) is not true, for all $\varepsilon > 0$ and for all nonnull $f \in \mathcal{B}^{\alpha}$ with f(0) = 0. However we will prove the following result:

Theorem 1.1. Assume $\alpha > -1$. Then there exists a constant $K(\alpha) > 0$ depending only on α such that

$$\sup_{z \in f^{-1}(\Sigma_{\varepsilon})} \left(1 - |z|^2\right)^{\alpha} \left| f'(z) \right| \ge K(\alpha) \varepsilon \frac{|f'(0)|^4}{\|f\|_{\alpha}^3},\tag{3}$$

for any nonconstant function $f \in \mathcal{B}^{\alpha}$ with f(0) = 0.

The above result implies that the inequality (1) is true for all $\varepsilon > 0$ and $\alpha \ge 3$ if we consider univalent functions in the α -Bloch space fixing the origin. This extends the result of Marshall and Smith in [3].

2. Failure for $\alpha = 1$

In this section we will show that the inequality (1) is not true, for all $\varepsilon > 0$ and for all nonnull $f \in \mathcal{B}^{\alpha}$ with f(0) = 0when $\alpha = 1$. We can note that if $\alpha = 1$, then $\|\cdot\|_{\alpha} = \|\cdot\|_1$ is the Möbius invariant seminorm. Thus for each $f \in \mathcal{B}$ and any $a \in \mathbb{D}$ we have $\|f\|_1 = \|g_a\|_1$, where $g_a = f \circ \varphi_a - f(a)$. So $g_a(0) = 0$ and a change of variables shows

$$\sup_{z \in g_a^{-1}(\Sigma_{\varepsilon})} (1 - |z|^2) |g'_a(z)| = \sup_{w \in f^{-1}(\Sigma_{\varepsilon} + f(a))} (1 - |w|^2) |f'(w)|.$$

So if (1) held it would follow that $\delta ||f||_1 = \delta ||g_a||_1 < \sup_{w \in f^{-1}(\Sigma_{\varepsilon} + f(a))} (1 - |w|^2) |f'(w)|$, for all $a \in \mathbb{D}$ and $f \in \mathcal{B}$, which is not possible.

3. Proof of the main theorem

The following well known result (see [2,5]) will play an important role in the proof of the main theorem. We will denote by D(a, r) the Euclidean disk with center *a* and radius *r*.

Theorem 3.1 (1/4-Koebe). If g(0) = 0 and g'(0) = 1, then $D(0, \frac{1}{4}) \subset \Omega$, where g is a conformal map from the unit disk \mathbb{D} into a domain Ω .

We now give the proof of our main theorem. We can observe that inequality (3) is true if f'(0) = 0 therefore we can suppose that $f'(0) \neq 0$. Since f is an analytic function on the disk $D(0, \frac{1}{2})$, we can apply the Cauchy integral formula to obtain

$$\left|f'(z)\right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\left|f'(\mathrm{re}^{\mathrm{i}\theta})\right|}{\left|\mathrm{re}^{\mathrm{i}\theta}-z\right|} r \,\mathrm{d}\theta,$$

for any $|z| < \frac{1}{2}$ and any $\frac{1}{2} < r < 1$. Integrating from $r = \frac{3}{4}$ to $r = \frac{7}{8}$ we have

$$\frac{1}{8} \left| f'(z) \right| \leq 2 \int_{\{3/4 < |s| < 7/8\}} \left| f'(s) \right| \mathrm{d}A(s), \tag{4}$$

for any $|z| < \frac{1}{2}$. Also, we can note that there exist positive constants $K_1(\alpha)$, $K_2(\alpha)$ such that $K_1(\alpha) \le (1 - |s|^2)^{\alpha} \le K_2(\alpha)$, for all $\frac{3}{4} < |s| < \frac{7}{8}$. Thus, substituting in (4), we can see that there exists a constant $K_3(\alpha) > 0$ such that

$$\left|f'(z)\right| \leqslant K_3(\alpha) \|f\|_{\alpha},\tag{5}$$

for all *z* such that $|z| < \frac{1}{2}$.

Next, we define the function $h(w) = \frac{1}{2K_3(\alpha)||f||_{\alpha}} \{f'(\frac{w}{2}) - f'(0)\}$, for $w \in \mathbb{D}$. It is not hard to see that h is analytic function on \mathbb{D} satisfying h(0) = 0 and $|h(w)| \leq 1$. Invoking Schwarz's lemma, we obtain $|h(w)| \leq |w|$, for all $w \in \mathbb{D}$. Hence, we have

$$\left| f'(z) - f'(0) \right| \leqslant 4K_3(\alpha) \|f\|_{\alpha} |z|, \tag{6}$$

for all $|z| < \frac{1}{2}$. Now, if we take $R = \frac{1}{8K_3 ||f||_{\alpha}} |f'(0)|$, then from (5) we have $R < \frac{1}{8}$ and from (6) we obtain that $|f'(z) - f'(0)| < \frac{1}{2} |f'(0)|$, for all |z| < R. This implies that the function f is one to one on the disk D(0, R). Thus, if we define the function $g(z) = \frac{1}{Rf'(0)} f(Rz), z \in \mathbb{D}$, we can see that g(0) = 0 and g'(0) = 1. Then by the 1/4-Koebe theorem, we have $D(0, \frac{1}{4}) \subset g(\mathbb{D})$. This implies that $D(0, \sigma) \subset f(D(0, R))$, where

$$\sigma = \frac{|f'(0)|^2}{32K_3 \|f\|_{\alpha}}$$

Therefore

$$\begin{split} \sup_{z \in f^{-1}(\Sigma_{\varepsilon})} & \left(1 - |z|^2\right)^{\alpha} \left| f'(z) \right| \geqslant \int_{f^{-1}(\Sigma_{\varepsilon} \cap D(0,\sigma)) \cap D(0,R)} \left(1 - |z|^2\right)^{\alpha} \left| f'(z) \right| \mathrm{d}A(z) \\ \geqslant & \frac{K_1(\alpha)}{K_3(\alpha) \| f \|_{\alpha}} \int_{f^{-1}(\Sigma_{\varepsilon} \cap D(0,\sigma)) \cap D(0,R)} \left| f'(z) \right|^2 \mathrm{d}A(z) \\ &= & K_4(\alpha) \varepsilon \frac{|f'(0)|^4}{\| f \|_{\alpha}^3}, \end{split}$$

where in the second inequality we have used $|z| < R < \frac{1}{8}$, $|f'(z)| \leq K_3 ||f||_{\alpha}$, and also, the fact that if f is 1–1 on the set E then

$$\int_{E} \left| f'(z) \right|^2 \mathrm{d}A(z) = \operatorname{area}(f(E)).$$

This concludes the proof of the theorem. \Box

Now we can extend the result of Marshall and Smith in [3] to the α -Bloch spaces.

Corollary 3.2. If $\alpha \ge 3$, then for all $\varepsilon > 0$, there exists a constant $\delta > 0$, depending only on α and ε , such that

$$\sup_{f^{-1}(\Sigma_{\varepsilon})} \left(1 - |z|^2\right)^{\alpha} \left| f'(z) \right| \ge \delta \|f\|_{\alpha},\tag{7}$$

for any univalent function $f \in \mathcal{B}^{\alpha}$ with f(0) = 0.

Proof. Indeed, it is known (see [2, Distortion Theorem]) that if f is a conformal map from the unit disk \mathbb{D} into a domain Ω and f(0) = 0, then for all $z \in \mathbb{D}$ holds

$$\frac{1-|z|}{(1+|z|)^3} \left| f'(0) \right| \le \left| f'(z) \right| \le \frac{1+|z|}{(1-|z|)^3} \left| f'(0) \right|$$

In particular, for all $z \in \mathbb{D}$ and $\alpha \ge 3$, we have $|f'(0)| \ge \frac{1}{16}(1-|z|^2)^3|f'(z)| \ge \frac{1}{16}(1-|z|^2)^{\alpha}|f'(z)|$, and $|f'(0)| \ge \frac{1}{16}|f|_{\alpha}$. Thus using the estimate (3) we have

$$\sup_{z\in f^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{\alpha} \left|f'(z)\right| \ge \frac{K(\alpha)}{(16)^4} \varepsilon \|f\|_{\alpha}.$$

This complete the proof of Corollary 3.2. \Box

Remark 1. We finish this Note with two questions: If we omit the condition that the function is univalent in Corollary 3.2, does the result continue to be true? Is the inequality (1) true for all $\varepsilon > 0$ when $\alpha \in (1, 3)$?

References

- [1] R. Castillo, J. Ramos Fernández, On the angular distribution of mass by Besov functions, B. Belg. Math. Soc. Sim.-St., in press.
- [2] P. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
- [3] D. Marshall, W. Smith, The angular distribution of mass by Bergman functions, Rev. Mat. Iberoamericana 15 (1999) 93-116.
- [4] F. Pérez-González, J. Ramos Fernández, On dominating sets for Bergman spaces, in: Bergman Spaces and Related Topics in Complex Analysis, in: Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, 2006, pp. 175–185.
- [5] C. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, 1992.