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Abstract

We state and discuss a theorem which links the existence of blossoms in a spline space (with sections in different Extended
Chebyshev spaces and with connection matrices which are not necessarily totally positive) with the possibility of Hermite interpo-
lation in its derivative space under Schoenberg–Whitney conditions. To cite this article: A. Kayumov, M.-L. Mazure, C. R. Acad.
Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Splines de Chebyshev : interpolation et floraisons. Cette note établit un lien fondamental entre existence de floraisons dans
un espace de splines (à sections dans différents espaces de Chebyshev généralisés et avec matrices de connexion non nécessaire-
ment totalement positives) et possibilité d’interpoler au sens d’Hermite sous conditions de Schoenberg–Whitney. Pour citer cet
article : A. Kayumov, M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Floraisons et interpolation d’Hermite sont intimement liées comme le rappelle le théorème suivant :

Théorème 1.1. Étant donné un W-espace E de fonctions suffisamment différentiables supposé contenir les constantes,
les propriétés suivantes sont équivalentes :

(1) les floraisons existent dans l’espace E ;
(2) dans l’espace dérivé DE, tout problème d’interpolation d’Hermite a une unique solution.
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De plus, l’une ou l’autre de ces propriétés implique la suivante :

(3) dans l’espace E lui-même, tout problème d’interpolation d’Hermite a une unique solution.

Le présent travail a été motivé par le désir naturel d’établir le lien analogue dans le cadre d’espaces de splines très
généraux. Notre résultat principal est le suivant :

Théorème 1.2. Étant donné un espace S de W-splines supposé contenir les constantes, les propriétés suivantes sont
équivalentes :

(1) les floraisons existent dans S ;
(2) dans l’espace dérivé DS ainsi que dans tout espace de splines obtenu à partir de DS par insertion de noeuds

et/ou restriction, un problème d’interpolation d’Hermite donné a une unique solution si et seulement si il satisfait
les conditions de Schoenberg–Whitney.

De plus, l’une ou l’autre de ces propriétés implique la suivante :

(3) dans l’espace S lui-même ainsi que dans tout espace de splines obtenu à partir de S par insertion de noeuds et/ou
restriction, un problème d’interpolation d’Hermite donné a une unique solution si et seulement si il satisfait les
conditions de Schoenberg–Whitney.

Les différentes notions seront définies avec précision dans le corps de la note. Signalons seulement que les proprié-
tés (2) et (3) du Théorème 1.1 peuvent être formulées de façon équivalente sous la forme : DE (respectivement E) est
un espace de Chebyshev généralisé sur l’intervalle considéré. Il est intéressant de noter que, par l’intermédiaire des
floraisons, le Théorème 1.2 fournit pour l’interpolation d’Hermite une caractérisation géométrique intrinsèque aux
espaces de splines en question. Nous attirons l’attention du lecteur sur le fait que ces derniers sont à sections dans
des espaces différents et comportent éventuellement des matrices de connexion. Par ailleurs, notre résultat, totale-
ment exempt d’une quelconque hypothèse de totale positivité, permet d’aller bien au-delà du cadre voisin mais non
intrinsèque envisagé dans [7].

1. Introduction

The following theorem linking the existence of blossoms in a W-space with the possibility of Hermite interpolation
in its derivative space can by now be regarded as classical. (All the relevant definitions will be recalled in the following
section. We will everywhere be working on a bounded real interval I = [α,β].)

Theorem 1.1. ([6], Corollary 4.1) Let E be a W-space on I containing constants. Then the following two properties
are equivalent:

(1) blossoms exist in E;
(2) any Hermite interpolation problem has a unique solution in DE.

From any of the above properties follows:

(3) any Hermite interpolation problem has a unique solution in E.

In our work we have been motivated by the desire to derive an analogue of the above theorem for spline spaces.
Our main result is the following:

Theorem 1.2. Let S be a W -spline space containing constants (see Definition 2.2). Then the following two properties
are equivalent:



A. Kayumov, M.-L. Mazure / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 65–70 67
(1) blossoms exist in S;
(2) both in DS and in any spline space obtained from it by a combination of knot insertion and restriction to a

subinterval an Hermite interpolation problem has a unique solution if and only if it satisfies the Schoenberg–
Whitney conditions.

From any of the above properties follows:

(3) both in S and in any spline space obtained from it by a combination of knot insertion and restriction to a subin-
terval an Hermite interpolation problem has a unique solution if and only if it satisfies the Schoenberg–Whitney
conditions.

Note that any of the above conditions (1) and (2) implies that the W-spline space in question is actually an EC-spline
space (i.e., a space of splines with sections in EC-spaces, see definition below).

2. Definitions

We now proceed to give the pertinent definitions.

2.1. W-spaces, EC-spaces, and blossoms

Let E ⊂ Cn(I) be an (n + 1)-dimensional space. We say that it is a W-space on I if any Taylor interpolation
problem in n + 1 data has a unique solution in E; or, equivalently, if the Wronskian of a basis of E does not vanish
on I . We say that E is an Extended Chebyshev space (EC-space) on I if any Hermite interpolation problem in n + 1
data has a unique solution in E; or, equivalently, if the determinant of the collocation matrix of a basis of E does not
vanish whatever the choice of n + 1 (possibly repeated) collocation points in I .

Note that the second and third conditions of Theorem 1.1 can be thus reformulated by simply saying that DE and
E are respectively n- and (n + 1)-dimensional EC-spaces on I .

Let us define blossoms in a W-space E, thus clarifying the meaning of the first condition in Theorem 1.1. Choose
n functions Φ1, . . . ,Φn ∈ E such that (1,Φ1, . . . ,Φn) forms a basis of E; define the function Φ = (Φ1, . . . ,Φn). This
is a mother-function of the space E, from which any function F ∈ E

d (for any d � 1) can be obtained by an affine
map. The osculating flat OsciΦ(x) of order i (0 � i � n) at a point x ∈ I is the affine flat defined by the point Φ(x)

and the span of {Φ ′(x), . . . ,Φ(i)(x)}.
We say that blossoms exist in the space E if, for any τ1 < · · · < τr in I and any positive integers ν1, . . . , νr such

that
∑r

i=1 νi = n, the osculating flats (Oscn−νi
Φ(τi))

r
i=1 intersect at a single point. The blossom ϕ of Φ is then the

symmetric function

ϕ = (ϕ1, . . . , ϕn) : In −→ R
n,

{
ϕ
(
τ1

[ν1], . . . , τr
[νr ])} =

r⋂

i=1

Oscn−νi
Φ(τi),

where t [k] stands for a k-fold repetition of the point t .

2.2. W-spline spaces and blossoms

Let us denote by

– α < t1 < · · · < tq < β — interior knots;
– (mk

)q

k=1, 0 � mk � n, — knot multiplicities, m = ∑q

k=1 mk ;

– K = (t1
[m1], . . . , tq [mq ]) = (ξ1, . . . , ξm) — knot vector;

– (Mk)
q

k=1 — connection matrices. For each k, Mk is a square matrix of order n − mk which is lower-triangular and
has positive diagonal elements.

– (Ek)
q

k=0 — the section spaces. For each k, Ek is an (n+1)-dimensional W-space on [tk, tk+1] (t0 := α, tq+1 := β)
containing constants.
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With this, we define the spline space S as the space of all continuous functions S : I → R such that

(1) for k = 0, . . . , q: the restriction of S to [tk, tk+1] belongs to Ek ;
(2) for k = 1, . . . , q: the following connection condition is fulfilled:

(
S′(t+k

)
, . . . , S(n−mk)

(
t+k

))T = Mk · (S′(t−k
)
, . . . , S(n−mk)

(
t−k

))T
.

We now define blossoms in the case of a W-spline space S, thus clarifying the meaning of the first condition in
our theorem. The main difference between the non-spline case of a single space and the spline case is in the domain
of definition of blossoms: while in the former case blossoms are defined on the whole of In, in the latter case their
natural domain of definition is the set A of admissible n-tuples:

A = {
(x1, . . . , xn) ∈ In | ∀i = 1, . . . , q:min(x1, . . . , xn) < ti < max(x1, . . . , xn) ⇒
ti appears at least mi times among (x1, . . . , xn)

}
.

The rest of the definition proceeds along the same lines. Due to its definition, the spline space S contains constants.
We can thus choose a basis (1,Σ1, . . . ,Σn+m) of S and consider the mother-function Σ = (Σ1, . . . ,Σn+m). We
say that blossoms exist in the spline space S if, for any τ1 < · · · < τr in I and any positive integers ν1, . . . , νr such
that

∑r
i=1 νi = n and such that the n-tuple (τ1

[ν1], . . . , τr
[νr ]) is admissible, the osculating flats (Oscn−νi

Σ(τi))
r
i=1

intersect at a single point. The blossom σ of Σ is then the symmetric function

σ = (σ1, . . . , σn+m) :A −→ R
n+m,

{
σ
(
τ1

[ν1], . . . , τr
[νr ])} =

r⋂

i=1

Oscn−νi
Σ(τi).

It is due to the admissibility and to the nature of the connection matrices that all osculating flats involved in this
definition are well-defined, except possibly for the first and last ones, which, if necessary, must be interpreted as
Oscn−ν1Σ(τ+

1 ) and Oscn−νr Σ(τ−
r ) respectively.

We define the derivative spline space to be DS = {DS: S ∈ S}, where D stands for ordinary differentiation, left or
right at the knots. Instead of [α,β], the domain of definition of the spline functions in DS is somewhat untraditionally
the union

⋃q

k=0[t+k , t−k+1]. We write DS(t−k ) and DS(t+k ) to distinguish between the values of a function DS at tk as
a member of [tk−1, tk] and [tk, tk+1] respectively.

It is easily seen that dim S = n + 1 + m and dimDS = n + m.

2.3. The Hermite interpolation

We now specify what exactly is meant by an Hermite interpolation problem in the spline case, as well as by the
Schoenberg–Whitney conditions, thus clarifying the meaning of the second and third conditions in our theorem.

Given

– α � x1 < · · · < xr � β — interpolation sites;
– positive integers μ1, . . . ,μr � n — interpolation multiplicities, such that

∑r
k=1 μk = dim S (= n + m + 1) and

such that if xi = tk for some interior knot tk , then μi − 1 � n − mk ;
– I = (x1

[μ1], . . . , xr
[μr ]) = (y−n, . . . , ym) — the interpolation point vector;

– real numbers ai,j , i = 1, . . . , r , j = 0, . . . ,μi − 1 — interpolation data,

the associated Hermite interpolation problem in S is the problem of finding an element S ∈ S such that

for all i = 1, . . . , r; j = 0, . . . ,μi − 1: S(j)
(
xi

εi
) = ai,j , where εi ∈ {+,−} for i = 1, . . . , r.

Of course, εi can be suppressed either when xi is not a knot or when j = 0. An Hermite interpolation problem is thus
determined by the interpolation point vector, interpolation data, and the sequence (εi)

r
i=1. An Hermite interpolation

problem in DS is defined similarly, with dimDS substituted in place of dimS (in this case, when xi is a knot, εi can
no longer be suppressed for j = 0, since in contrast to S, splines in DS do not have to be continuous).

We say that an Hermite interpolation problem in S satisfies the Schoenberg–Whitney conditions, if the knot vector K
and the interpolation point vector I satisfy the following interlacing condition: for all k = 1, . . . ,m: yk−n−1 < ξk < yk .



A. Kayumov, M.-L. Mazure / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 65–70 69
3. Sketch of the proof

A vital role is played in the proof of our theorem by the existence of bases of minimally supported splines both in
S and in DS. We therefore proceed to give the following:

Definition 3.1 (B-spline basis). Given splines Nk ∈ S, −n � k � m, we introduce the following properties, which

make use of the extended knot vector (t0
[n+1], t1[m1], . . . , t [mq ]

q , t
[n+1]
q+1 ) = (ξ−n, . . . , ξm+n+1):

(BSB)1 (support property) for each k = −n, . . . ,m: suppNk = [ξk, ξk+n+1];
(BSB)2 (end-point property) for each k = −n, . . . ,m: Nk vanishes exactly n − ml + lK(k) + 1 times at the left end-

point ξk = tl of its support and exactly n − mr + rK(k + n + 1) + 1 times at the right end-point ξk+n+1 = tr
of its support, where the counting functions are defined by

lK(i) = max{j : ξi−j = ξi}, rK(i) = max{j : ξi+j = ξi};
(BSB)3 ( positivity property) for each k = −n, . . . ,m: Nk is positive in the interior of its support;
(BSB)4 (normalisation property)

∑m
k=−n Nk(x) = 1 for all x ∈ I .

Note that in case all knots are simple (i.e. all mk = 1) property (BSB)2 is redundant. If properties (BSB)1–(BSB)4 are
satisfied, we say that the sequence (Nk)

m
k=−n is the B-spline basis of S. This terminology is justified by the fact that

as soon as (BSB)1 and (BSB)2 hold, (Nk)
m
k=−n is indeed a basis of S.

There exists an essential link between blossoms and B-spline bases, as recalled in the following:

Theorem 3.2. ([5], Theorem 3.3) The following two statements are equivalent:

(1) blossoms exist in S;
(2) there exists a B-spline basis in S and in any spline space derived from S by knot insertion.

Its implication (1) ⇒ (2) results from the properties of blossoms: indeed, they enable us to evaluate all values of
Σ as convex combinations of the poles Πi of Σ via a de Boor-type algorithm, namely

Σ(x) =
m∑

i=−n

Ni(x)Πi, where Πi = σ(ξi+1, . . . , ξi+n) ∈ R
n+m,

m∑

i=−n

Ni(x) = 1.

The sequence (Nk)
m
k=−n of scalar coefficients forms a B-spline basis of S. Also due to the properties of blossoms

is the following feature of the B-spline bases obtained in this way: whenever blossoms exist in the spline space S,
the B-spline bases of S and of spaces obtained from it by knot insertion satisfy appropriate decomposition relations.
Namely, when knot insertion is considered, blossoms produce a relation between old and new poles, which, in turn,
yields a relation between old and new B-spline bases with the same support properties for the resulting coefficients
(discrete B-splines) as in the standard polynomial spline case.

In the space DS we cannot expect to have a B-spline basis as defined above, since DS does not have to contain
constants. Instead we make the following:

Definition 3.3 (quasi-B-spline basis). We say that a sequence (Bk)
m
k=−n+1 of splines in DS is a quasi-B-spline basis

of DS if it satisfies properties (BSB)1 and (BSB)2 (which are as in Definition 3.1 but with n = dimDEk substituted
everywhere in place of n + 1 = dim Ek).

From a B-spline basis in S we can construct a quasi-B-spline basis in DS; furthermore, decomposition relations
in S (relative to knot insertion) lead to appropriate decomposition relations in DS.

The proof of implication (1) ⇒ (2) of our main theorem relies on the existence of quasi-B-spline bases in deriv-
ative spline spaces and on the associated relevant decomposition relations. It is essentially modelled on the proof of
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Theorems 2 and 3 in [2]. The proof of the reverse implication (2) ⇒ (1) proceeds via the construction of quasi-B-
spline bases in derivative spaces under the Schoenberg–Whitney conditions, then of B-spline bases in original spaces,
finally via Theorem 3.2 to the existence of blossoms.

4. Comments

Whenever we know, from some other line of reasoning, that blossoms exist in S, equivalence (1) ⇔ (2) and
implication (1) ⇒ (3) automatically furnish us with Schoenberg–Whitney type theorems for the spline spaces DS

and S (and all spline spaces obtained from them as specified in the theorem).
1) When considering spline spaces, either polynomial or Chebyshevian, with connection matrices, it has become

conventional to impose the requirement of total positivity on these matrices. For polynomial splines this assumption
applies to matrices connecting ordinary derivative vectors; whereas for Chebyshevian splines it applies to matrices
connecting generalised derivative vectors, defined by means of weight functions (see [1]). There are, however, certain
basic inconveniences inherent in the use of weight functions and of connection matrices expressed with their help:

– their choice is not unique: for a given EC-space of dimension greater than one, there always exists an infinity of
ways to choose essentially different weight functions;

– a connection matrix which is totally positive with one choice of weight functions for the two adjacent EC section
spaces, may fail to be totally positive with a different choice of weight functions.

The characteristic furnished by our theorem is free from these disadvantages: it is formulated in terms of blossoms
(and of B-spline bases, through Theorem 3.2), whose existence is an intrinsic property of a spline space and does not
depend on an arbitrary choice of weight functions.

2) It is known (see [3], Theorem 6.10) that total positivity of connection matrices guarantees the existence of
blossoms. We thus obtain the following:

Corollary 4.1. If all connection matrices Nk (linking generalised derivative vectors) of a spline space S are totally
positive, then in S, in DS, as well as in any spline space obtained from either of them by a combination of knot
insertion and restriction to a subinterval, an Hermite interpolation problem has a unique solution if and only if it
satisfies the Schoenberg–Whitney conditions.

The assertion about S and spaces obtained from it recovers Theorems 4.1 and 4.2 of [7], while the assertion about
DS and spaces obtained from it is new.

The use of blossoms also empowers one to obtain new results by venturing into the largely unexplored ground
beyond total positivity. Thus, in [4] the second author has explored the case n = 3 of EC-splines with connection
matrices of order two (the dimensional equivalent of cubic splines) and has derived conditions on the connection
matrices Mk equivalent to the existence of blossoms. It has thus been shown that blossoms can exist even when the
connection matrices Nk fail to be totally positive: therefore, the requirement of existence of blossoms is strictly weaker
than the requirement of total positivity.

The use of blossoms thus supplies two advantages over the standard setting, both of which are novel with respect
to the existing literature on the subject. An article containing all the proofs of this Note is presently in preparation.
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