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Abstract

The arbitrary functions principle says that the fractional part of n X converges stably to an independent random variable uniformly
distributed on the unit interval, as soon as the random variable X possesses a density or a characteristic function vanishing at infinity.
We prove a similar property for random variables defined on the Wiener space when the stochastic measure d By is crumpled on
itself. To cite this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une extension a I’espace de Wiener du principe des fonctions arbitraires. Le principe des fonctions arbitraires dit que la
partie fractionnaire de n X converge stablement vers une variable aléatoire indépendante uniformément répartie sur [0, 1] dés que X
a une densité ou seulement une fonction caractéristique tendant vers zéro a I’infini. Nous établissons une propriété analogue pour
des variables aléatoires définies sur I’espace du mouvement brownien par repliement de la mesure stochastique d By sur elle-méme.
Pour citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let us denote {x} the fractional part of the real number x and =d> the weak convergence of random variables. Let
(X, Y) be a pair of random variables with values in R x R”, we refer to the following property or its extensions as the
arbitrary functions principle:

(nX},Y) =% (U, Y) (1)

where U is uniformly distributed on [0, 1] independent of Y.
This property is satisfied when X has a density or more generally a characteristic function vanishing at infinity
(cf. [5] Chapter VIII §92 and §93, [2,4]). It yields an approximation property of X by the random variable X, =

X — %{nX } = % where [x] denotes the entire part of x:
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Proposition 1. Let X be a real random variable with density and Y a random variable with values in R". Let
X, = X

(a) Forallp eC'n Lip(R) and for all integrable random variable Z,
(n(p(Xn) = 9(X)).Y) =5 (~U¢/(X).Y),
1
PE[(p(X) —9(X))'Z] — ZE[¢*(X)Z]

where U is uniformly distributed on [0, 1] independent of (X, Y).
(b) vy € L'([0,1])

d
(¥ (n(Xn = X)), Y) = (¥(=U),Y)
under any probability measure P«P.
We extend such results to random variables defined on the Wiener space.

2. Periodic isometries

Let (B;) be a standard d-dimensional Brownian motion and let m be the Wiener measure, law of B. Let t — M;
be a bounded deterministic measurable map, periodic with unit period, into the space of orthogonal d x d-matrices
such that fol Mgds =0 (e.g. a rotation in R? of angle 2zt). The transform B, fot M dBg defines an isometric
endomorphism in L?(m), 1 < p < co. Let be M,,(s) = M (ns) and T, = Ty;,. The transposed of the matrix N is
denoted N*.

Proposition 2. Let be X € L' (m). Let ini be a probability measure absolutely continuous w.r. to m. Under i we have

(T,(X), B) =% (X (w), B).

The weak convergence acts on R x C([0, 1]) and X (w) denotes a random variable with the same law as X had under
m function of a Brownian motion W independent of B.

Proof. (a) If X = expf{i /01 £.dB + 1 /01 |€|% ds} for some element & € L2([0, 1], R?), we have

1

1
T,,(X)=exp{i/§S*Mn(s)st+%f|§|2ds}.
0 0
Putting Z!" = f(; £XM, (s)dB; gives
t 1
2. 2'), = [ memies s = [16P0 s
0 0

which is a continuous function. Now by Proposition 1,

t t 1
/S:Mn(s)ds—>/Ss*ds/M,,(s)ds=0
0 0 0

which implies by Ascoli theorem sup, | fot £XM, (s)ds| — 0. The argument of H. Rootzén [6] applies and yields

( f g*M,,dB,B) -, ( / caw, B)
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giving the result in this case by continuity of the exponential function.
(b) When X € L'(m), we approximate X by X; linear combination of exponentials of the preceding type and
consider the characteristic functions. The inequality

B[ X0 ¢l 198 _ g0 9B | < | T, (X) — To(X0)| = lulI X = Xills
gives the result.
(c) This extends to the case m < m by the properties of stable convergence. O

3. Approximation of the Ornstein—Uhlenbeck structure

From now on, we assume for simplicity that (B) is one-dimensional. Let 6 be a periodic real function with unit

period such that fol 6(s)ds =0 and fol 92(s) ds = 1. We consider the transform R, of the space Lé(m) defined by its
action on the WienerAchaos: .
X =/ _. . fG1....50)dBy ---dBy, for f € L3m ([0, 115, ©),

Ru(X) = / Fst,.. s @D ap L lnf s gp

i k i
R,, is an isometry from Lé(m) into itself. From n(er 2r=170%) _ 1) = Zl;zl O(ns) fol e 20905 4 it follows that
if X belongs to the kth chaos

2
[n(Ru(X) — X) |72 SE2IXI2, 10112
In other words, denoting A the Ornstein—Uhlenbeck operator, X € D(A) implies
[n(Ra(X) = X) | 2 <20 AXII L2116 lloo
and this leads to

Proposition 3. If X € D(A)
(=in(Ra(X) — X), B) =% (X*(w, ), B)

where W is an Brownian motion independent of B and X* = fol Dy X dWs.

Proof. If X belongs to the k-th chaos, expanding the exponential by its Taylor series gives

k
n(Ra(X) — X) =i / fGs1o-o50) ) 0(nsy)dBy, - dBy, + Oy
5] <o <Sk p=l
with [| Q17 < k2101131 X112,
Then using that |,

S < <Sp < <Sk

h(st,...,s0)0(nsp)dBy, -+ -dBSp ---dBy, converges stably to

/ h(si,...,sk)dBg, ---dW;, ---dB,
§]<ee<Sp <<k
one gets

A

f(t,s2,...,sk)dW;dBy, ---dBy,

T<S§p<---<Sk
+ / fGs1,t, ..., s0)dBs, AW, ---dBy,
_in(Rn (X) - X) :Y> S <t<--<Sk
+ / fGs1,...,s6-1,1)dBy, ---dBs,_, dW,

S < <Sp—1 <t
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which equals [ Ds(X)dW, = X*.
The general case in obtained by approximation of X by Xj for the D>? norm and the same argument as in the
proof of Proposition 2 by the characteristic functions gives the result. O

By the properties of stable convergence, the weak convergence of Proposition 3 also holds under m < m. By
similar computations we obtain

Proposition 4. VX € D(A)
n?E[| R, (X) — X|'] — 2€[X]

where & is the Dirichlet form associated with the Ornstein—Uhlenbeck operator.

Following the same lines, it is possible to show that the theoretical A and practical A bias operators (cf. [1]) defined
on the algebra £{e/$48; & € C!} by

n*E[(Ry(X) — X)Y] = (AX,Y) 120,
nE[(X — Ru(X))Ra(Y)] = (AX, Y) 12()

are defined and equal to A.

Comment. The preceding properties are very similar to the results concerning the weak asymptotic error for the
resolution of SDEs by the Euler scheme, involving also an ‘extra’-Brownian motion (cf. [3]).

Nevertheless these results do not use the arbitrary functions principle because a convergence like (n fd(s -
[';—S])dBS,B) :d> (\/%W + %B,B) is hidden by a dominating phenomenon (ﬁfd(Bs — By dBs, B) :d>
( % W, B) due to the fact that when a sequence of variables in the second (or higher order) chaos converges sta-

bly to a Gaussian variable, this one appears to be independent of the first chaos and therefore of B.

The arbitrary functions principle is slightly different, it is a crumpling of the random orthogonal measure d B; on
itself. This operates even on the first chaos. Concerning the solution of SDEs by the Euler scheme, it is in force for
SDEs of the form

Xp=xg+ Jo S1(XT) By + Jo £12(X5, X7) ds,
XP=x3+ fo F2(X), X2)ds

where X! is with values in R¥1, X2 in R®2, B in R and f¥ are matrices with suitable dimensions which are encoun-
tered for the description of mechanical systems under noisy solicitations when the noise depend only on the position
of the system and the time. In such equations, integration by parts reduces the stochastic integrals to ordinary integrals
and it may be shown that solved by the Euler scheme they present a weak asymptotic error in % instead of ﬁ as

usual.
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