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Abstract

For the 3D system of equations describing large-scale ocean dynamics in the Cartesian coordinate system existence and unique-
ness of a solution on an arbitrary time interval [0, T ] is proved and the norm ‖ûx‖ is shown to be continuous in time on [0, T ]. To
cite this article: G.M. Kobelkov, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’existence d’une solution en 3D pour la dynamique de l’océan à grande échelle. L’auteur considère le système 3D d’équa-
tions décrivant la dynamique de l’océan à grande échelle en coordonnées cartésiennes. Il démontre, pour tout coefficient de viscosité
et toute donnée initiale, l’existence et l’unicité d’une solution sur un intervalle de temps [0, T ] arbitrairement, ainsi que la conti-
nuité en temps sur l’intervalle [0, T ] de la norme ‖ûx‖. Pour citer cet article : G.M. Kobelkov, C. R. Acad. Sci. Paris, Ser. I 343
(2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

In a number of papers of J.-L. Lions, R. Temam, etc. [5,6,4,3,2] study of the system of large-scale ocean dynamics
was carried out. Theorems on existence and uniqueness of a solution ‘in the small’ and ‘in the large’ under the
assumptions on smallness of a domain, time interval or initial data and even under the assumption of smallness of
a domain in z direction were proved. In this Note we prove the existence and uniqueness of a solution for the 3D
primitive equations ‘in the large’ without any smallness assumption.

Only for simplicity we consider the system of large-scale ocean dynamics in the Cartesian coordinates and assume
the right-hand side to be equal to zero. We also simplify the system by reducing the heat equation and the salinity one
to the density equation being the sum of them with some coefficients. In what follows, all considerations are also valid
for the original system.

Let Ω be a cylinder in R
3 of the form Ω = Ω ′ × [0,1], where Ω ′ is a domain on the x, y-plane with a piecewise

smooth boundary. The boundary ∂Ω is represented as ∂Ω = S1 ∪ S, S = ∂Ω ′ × [0,1], so S1 consists of the upper
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and bottom surfaces of the cylinder and S is its lateral surface, Qt denotes the domain Qt = Ω × [0, t]; so, QT =
Ω × [0, T ].

Let u = (u1, u2, u3) be a velocity vector; by û we denote the vector–function û = (u1, u2). In what follows, one
assumes that the indices i and j range 1,2, and the index k—from 1 to 3. Space variables are denoted by x =
(x1, x2, x3) as well as x, y, z and x′ = (x1, x2).

We use the following notations:

∂kv = ∂v

∂xk

, vx = ∇v, vx′ = ∇′v = (∂1v, ∂2v), div′ û = ∂1u1 + ∂2u2,

�′ = ∂2
1 + ∂2

2 , ‖v‖q = ‖v‖Lq(Ω), ‖v‖ = ‖v‖L2 .

As usual, by c with and without indices we denote various constants in the inequalities not depending on the functions
entering these inequalities.

The system of equations describing the large-scale ocean dynamics has the form [7,5]

ût − ν�û + lû + ∇′p + ukûxk
= 0,

∂p

∂x3
= −gρ,

div u = 0, ρt − div(ν1∇ρ) + ukρxk
= 0.

(1′)

Boundary and initial conditions for (1′) are

û · n = ∂û
∂n

× n = 0 on S,
∂û
∂n

= 0 on S1, u3 = 0 on S1,
∂ρ

∂n
= 0 on ∂Ω,

û(0, x) = û0(x),

1∫
0

div′ û0 dz = 0, ρ(x,0) = ρ0(x);
(1′′)

we assume summation over repeating indices in products; g is the acceleration of gravity, n is the outer unit normal
to S, ∂

∂n
is the normal derivative and a × b = a1b2 − a2b1. The operator lû is of the form lû = ω(u2,−u1) and is

skew-symmetric.
Proof of the existence of a solution to (1′), (1′′) ‘in the large’ is based on the following chain of a priori estimates.

The first is obtained by taking the scalar product in L2(Ω) of the last equation (1′) and ρ3:

max
0�t�T

∥∥ρ(t)
∥∥4

4 + ν1

T∫
0

‖ρρx‖2 dt � c‖ρ0‖4
4. (2)

So, from the second equation of (1′) and (2) it follows

max
0�t�T

∥∥∂3p(t)
∥∥

4 � c‖ρ0‖4. (3)

Taking the scalar product of the first equation of (1′) and û, after some trivial transformations and the use of (2) one
gets

max
0�t�T

∥∥û(t)
∥∥2 + ν

T∫
0

‖ûx‖2 dt � c‖û0‖2 + cT ≡ c. (4)

Now it is possible to obtain an a priori estimate for the pressure function p. The main idea is to represent p as
p = p1 +p2, where p2,

∫ 1
0 p2 dz = 0, is an antiderivative of pz in z and p1, (p3

1,1) = 0, is a function of two variables
(x and y) only. For the norm of p2 the estimate ‖p2‖4 � c‖∂3p2‖4 � c follows from (3). To estimate the norm
of p1, let us take the scalar product of the first equation of (1′) and ∇′(�′)−1p3

1; here we use the Neumann boundary
conditions to invert �′. Since p1 is a function of the x and y variables only, it becomes possible to estimate the scalar
product properly. Namely, we represent the scalar product as an iterated integral in z and Ω ′, apply the Hölder and
multiplicative inequalities for the 2D case and then use that p1 does not depend on z. As for estimating the integral over
the boundary ∂Ω ′, we differentiate the first boundary condition in the tangent direction and use the second boundary
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condition. So, this integral is transformed to the form containing derivatives of the normal components which admits
proper estimation. It should be noted that in the case when Ω ′ is a polygon the integral over ∂Ω ′ vanishes. Thus, the
estimate for p is of the form

max
0�t�T

‖p2‖4 � c‖ρ0‖4, ‖p1‖4 � c
(‖vx‖1/2 + ‖v‖1/2 + 1

)‖v‖1/2, (5)

where v = û2.
The next a priori estimate is obtained after taking the scalar product of the first equation of (1′) and û2û:

1

4

d

dt

∥∥û(t)
∥∥4

4 − ν
(
�û, û2û

) + (∇′p, û2û
) + (

ukûxk
, û2û

) = 0. (6)

The last scalar product is equal to zero and the first one gives −(�û, û2û) = ∫
Ω

v|∇û|2 dx + 1
2‖vx‖2. As for the

remaining scalar product, it can be estimated as∣∣(∇′p, û2û
)∣∣ � ν

2
‖vx‖2 + c

(‖v‖2‖ûx‖2 + ‖v‖2‖ûx‖ + ‖v‖2 + ‖ûx‖2). (7)

Using these estimates and Gronwall’s inequality, from (6) one gets

max
0�t�T

∥∥û(t)
∥∥4

4 +
T∫

0

∫
Ω

û2|ûx |2 dx dt � c. (8)

From the estimates obtained, it follows that
∫ T

0 ‖p‖4
4 dt � c.

Differentiating (1′) in z and using the same technique and the previous relations, it is possible to get the new
estimates

max
0�t�T

∥∥ûz(t)
∥∥4

4 + ν

T∫
0

∫
Ω

|ûz|2
(
ûzx

)2 dx dt � c, (9)

max
0�t�T

‖ρz‖2 +
T∫

0

‖ρzx‖2 dt � c. (10)

The final step in obtaining a priori estimates consists in differentiating (1′) in t . Using similar techniques and the
estimates obtained, we have

max
0�t�T

(∥∥ût (t)
∥∥2 + ∥∥ρt (t)

∥∥2) +
T∫

0

(‖ûtx‖2 + ‖ρtx‖2)dt � cT

(‖û0‖4
W 2

2
+ ‖ρ0‖2

W 2
2

)
. (11)

Taking into account all the obtained a priori estimates, we get the overall estimate

max
0�t�T

(‖ρ‖4 + ‖ρz‖ + ‖ûx‖ + ‖u3‖ + ‖ûz‖4 + ‖ût‖ + ‖ρt‖
)

+
T∫

0

(‖ρx‖2 + ‖ρzx‖2 + ‖ρtx‖2 + ‖ûx‖2 + ‖ûûx‖2 + ‖ûzx‖2 + ‖ûzûzx‖2 + ‖ûtx‖2)dt

� cT

(‖û0‖4
W 2

2
+ ‖ρ0‖2

W 2
2

)
. (12)

Let us now proceed to the proof of existence and uniqueness of a solution. Introduce the following spaces:

• V2—a space of vector functions v̂ = (v1, v2) from W1
2(QT ), satisfying the boundary conditions (1′′) and such

that v̂z ∈ W1
2(QT ) and

∫ 1
0 div′ v̂(x′, z, t)dz = 0;

• R—a space of functions r ∈ W 1(QT ) such that rz ∈ W 1(QT ).
2 2
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As for the relation for ρ, take the scalar product of the last equation of (1′) and r ∈ R and integrate the result in t

from 0 to t . Integrating by parts gives∫
Qt

(−ρrt + ν1ρxrx − ukρrxk
)dx dt +

∫
Ω

ρr|t=t dx −
∫
Ω

ρ0r|t=0 dx = 0. (13)

Taking then the scalar product of the first equation of (1′) and v̂ ∈ V2 and further integration in t give∫
Qt

(−ûv̂t + νûx v̂x + lûv̂ + ∇′p · v̂ + ukûxk
v̂)dx dt +

∫
Ω

ûv̂|t=t dx −
∫
Ω

û0v̂|t=0 dx = 0; (14)

here u3 is determined from û via the relations div u = 0, u3(t, x
′,0) = 0.

It is possible to transform (14) to exclude the vertical component of the velocity as well as the pressure function:

∫
Qt

(
−ûv̂t + νûx v̂x + lûv̂ − gρ

x3∫
0

div′ v̂ dz − uj ûv̂xj
+

x3∫
0

div′ û dz ûv̂x3

)
dx dt

+
∫
Ω

ûv̂|t=t dx −
∫
Ω

û0v̂|t=0 dx = 0. (15)

Thus, a weak solution to (1′), (1′′) is a pair of functions û ∈ V2, ρ ∈ R satisfying for all v̂ ∈ V2, r ∈ R and arbitrary
t ∈ [0, T ] the relations (13), (15).

Using (12), it is not difficult to prove uniqueness of a solution.
The existence of a solution follows from the results of [2,8], where existence of the local in time solution in the 3D

case has been proven, and the estimate (12). Continuity of the norm ‖ûx‖ in t follows from (12) and the imbedding of
W 1

2 into C in 1D case.
Thus, the following statement has been proven:

Theorem. Let û0 ∈ W2
2(Ω), ρ0 ∈ W 2

2 (Ω),
∫ 1

0 div′ û0 dz = 0 and û0 satisfies the boundary conditions (1′′). Then
for any ν, ν1 > 0 and any arbitrary T > 0 the problem (1′), (1′′) has in QT a unique weak solution such that
û2, û2

z, ûx, û2
zx, ût , ûtx ∈ L2(QT ), and ρ2, ρx, ρzx, ρtx ∈ L2(QT ). The norm ‖ûx‖ is continuous in t .

A similar result but with a totally different method has been recently obtained in [1] under the assumption of a
smooth boundary ∂Ω ′.
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