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Abstract

We study the lagrangian controllability of the heat equation in several dimensions. In dimension one, we prove that any pairs
of intervals are diffeomorphic through the flow of the solution of the heat equation via an adequate control. In higher dimensions
we prove a similar controllability result for the flow of the gradient of the solution in a radial case in arbitrary finite time, and for
convex domains in a sufficiently large time. To cite this article: T. Horsin Molinaro, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Application de la contrôlabilité exacte à zéro de l’équation de la chaleur au déplacement d’ensembles. On étudie la contrô-
labilité lagrangienne de l’équation de la chaleur en toutes dimensions. En dimension 1, on montre que deux intervalles quelconques
sont difféomorphes via le flot de la solution de l’équation de la chaleur avec un contrôle adéquat. En dimension supérieure on prouve
un résultat de contrôlabilité similaire pour le flot du gradient, en temps fini fixé pour le cas radial, et en temps assez grand pour le
cas convexe. Pour citer cet article : T. Horsin Molinaro, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

For many years, the controllability of evolution equations modeling (usually) physical systems has been studied;
see, e.g. [6,9,10,13,15]. Concerning the more specific case of fluids, ideas have been developed to control the speed
of the fluid (see, e.g. [3] and [4] for global results) and, more recently, in fluid-interaction problems, the position of
a body in a fluid and the velocity of the fluid itself (see, e.g. [1,14]). Considering applications, for instance, in the
study of the dispersion of particles, an important tool to approach pollution problems, it might be useful to control the
position of the fluid itself, and not only its velocity. This work is concerned with the problem of moving subsets inside
a domain under the flow of the solution (or the gradient of the solution) of a distributed controlled heat equation. In
Section 2 we give the result in the one-dimensional case, i.e. Theorem 1 which is explained in Section 3. In the final
Section 4 we consider the case of higher dimensions where we prove an similar result for the flow of the gradient.
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2. Formulation of the problem, statement of the result

Let I = (0,1) and let I1 and I2 two given closed intervals of I such that ∂I1 ∩ ∂I = ∂I2 ∩ ∂I . Let also ω be an
open set such that �ω ⊂ I . For a given T > 0 we want to find h (whose regularity will specified later) such that the
solution u of

ut − uxx = h1(0,T )×ω in (0, T ) × I, u = 0 on (0, T ) × ∂I, u(t = 0) = 0, (1)

moves I1 to I2 from t = 0 to t = T .

Definition. We will say that u ‘moves’ I1 to I2 from t = 0 to t = T , if once considered g : [0, T ] × [0,1] → [0,1] the
solution of

∂tg(t, x) = u
(
t, g(t, x)

)
, (t, x) ∈ [0, T ] × [0,1], g(0, x) = x, (2)

one has

g(T , I1) = I2, (3)

and g(T , ·) is a diffeomorphism of I1 onto I2.

We prove the following:

Theorem 1. There exists h ∈ L2((0, T ) × ω) such that if u is the solution of (1) then u moves I1 to I2 from t = 0 to
t = T . Moreover, if one has T large enough (depending on d(I2,R \ I )), one can also impose u(T , ·) = 0.

3. Sketch of proof of Theorem 1

Without loss of generality we may assume that ω = (a, b). We will assume that min(min(I1),min(I2)) > b. If it is
not, minor modifications are needed. The rough strategy is the following: we will move first I1 into a subinterval of ω

with a solution of the heat equation for t ∈ [0, T /3]. We then perform a similar procedure to move backwards I2 into
a subinterval of ω from t = T to t = 2T/3. Then we will use the exact controllability of the heat equation to combine
the two first arguments between t = T/3 and t = 2T/3.

For the purpose of the first step we consider u1 the solution of (1) with h = −1. Let us also consider for a small
μ ∈ (0,min(T /6, (b − a)/4)) a nonnegative function η(t, x) such that η is decreasing with respect to t for fixed x,
and such that{

η(t, x) = 0, t � T/3 − μ, x � a + μ/2; η(t, x) = 1, t � T/3 − μ, x � a + μ,

η(T /3, x) = 0, x � b − μ; η(T /3, x) = 1, x � b − μ/2.

Let M be a positive constant. Then for M large enough Mηu−1 will move I1 to [a2, b2] ⊂ (a + μ/2, b − μ).
For the second step from t = T to t = 2T/3 one applies a similar procedure by taking u(x, t) = C(1 − x) with

C > 0 large enough for x � b and u = 0 for x � a and suitable in ω so that the flow moves backwards I2 to some
[a3, b3] ⊂ (a + μ/2, b − μ) and u(2T/3, ·) also being 0 on (0, b − μ). Let us mention that proceeding here, as in the
first step, is not possible due to the irreversibility of the heat equation.

Between t = T/3 to t = 2T/3 one connects (a, b) to itself with C2 noncrossing curves such that these curves join
[a2, b2] to [a3, b3] and are straight lines on (a, a + μ/2) and (b − μ,b). The speed of such a deformation defines u in
[T/3,2T/3] × (a, b) with support in [a + μ/2, b − μ].

Now, due to the exact zero controllability (see [8,9,11]) and since �u(2T/3, ·) is zero except in (b−μ,b), there ex-
ists a control h ∈ L2(T /3,2T/3;L2(ω′)) with ω′ = (b−μ/2, b−μ/4) such that one can drive u(T /3, ·) to u(2T/3, ·)
with a solution of the corresponding controlled heat equation on (T /3,2T/3)×Ω ′ with Dirichlet boundary conditions
where Ω ′ := (b − μ,1).

Thus we have a solution of (1) on (0, T ) × Ω which is continuous in time and space. Nevertheless, in order to
obtain a control in L2 in space and time it suffices to multiply u near x̄ := b −μ for t ∈ (T /3,2T/3) by a nonnegative
function which is zero in a small neighborhood of x̄ and which goes to 1 in a larger interval.

We skip the detailed proof of going to rest, but let us just explain the main idea: let v(x) = x for x � a and
v(x) = 1 − x for x � b. Then for any τ > 0, v can be driven to 0 from t = 0 to t = τ with hτ ∈ L2((0, τ );L2(ω)).
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The backward flow of I2 is, due to the regularity, a subinterval I ′
2 of I . Now we perform a similar method as before

on [0, T ], with u(x, t) = v(x) for t ∈ [2T/3, T ], and if T is large enough I ′
2 will be steered into (a, b) from t = T to

t = 2T/3.

Remarks. When sup(I1) < 1 and sup(I2) < 1 with similar arguments, one can impose that g(T , ·) is any given
preserving order diffeomorphism of I1 onto I2, but we are note able to do it when sup(I1) = sup(I2) = 1. Let us also
point out that the above method can be related to the so-called ‘return method’ introduced by J.-M. Coron in [2], since
we go from rest to rest, meanwhile we get suitable properties during the motion.

Remark (Extension to the nonlinear case). Let us remark that this method can be reformulated in the framework of
[5] for ut − uxx = u|u|p−1 + h1(0,T )×ω , for large enough T .

The case of initial moving states. It is straightforward that the same method applies if one considers u(t = 0) =
u0 ∈ L2(0,1), but we think that for fluid models u(t = 0) = 0 is more relevant.

4. Higher dimensions

Now let us illustrate the higher dimensions by considering the case where Ω = B(0,1), the open unit ball in R
N ,

N � 2, and ω = B(0,1/2) we take F1 and F2 two closed subset of Ω \ ω, and we want to study if there exists
h ∈ L2(ω × (0, T )) such that the solution of

∂tu − �u = h1ω×(0,T ), u = 0 on (0, T ) × ∂Ω, u(t = 0) = 0, (4)

moves F1 to F2 through the flow of minus its gradient during an interval of time of length T . We will assume that F1
and F2 are the closure of two C3 open sets that are C3 isotopic up to the boundary. We prove the following result:

Theorem 2. For any T > 0 there exists h ∈ L2((0, T ) × ω) such that for the solution of (4), the flow of −∇u is
well-defined for x ∈ F1 and

(i) the image of x through this flow at time t is in F2, (ii) and any point in F2 is the image of such a x.
Moreover if T is large enough then one can replace (ii) by the condition u(t = T ) = 0.

The idea of the proof in the symmetric case is based on a similar procedure as the proof of Theorem 1. For
t ∈ [0, T /3] we move F1 into F ′

1 ⊂ ω through minus the gradient of a radial solution (which can be shown to be
radially convex away of ω) of the controlled heat equation that we adjust in monotone way inside ω to a constant so
that the moved set goes to rest.

We proceed the same way between (2T/3, T ) with a modification in ω of the Green’s function at the origin of the
Laplace’s equation in Ω . Outside of ω we apply the exact controllability to trajectories as in Section 3. In ω, between
t = T/3 and t = 2T/3 we move F ′

1 into the backward image F ′
2 of F2 at t = 2T/3 by the flow of a gradient ∇v(t, x).

Let us just spot on the fact that to perform this, it suffices to move the boundary of F ′
1 to the boundary of F ′

2: let
φ(t, ·) :�ω → �ω be a C3 families of diffeomorphism such that φ(2T/3,F ′

1) = F ′
2. One then construct v(t, ·) such that

for ∇v(t, φ(t, x)) · n(φ(t, x)) = ∂tφ(t, x) · n(φ(t, x)), for x ∈ ∂F ′
t (for example one can extend v regularly to �ω with

−�v + v = 0 in F ′
t and ∂nv(t, y) = ∂tφ(t, φ−1(t, y)) · n(y) for any y ∈ ∂F ′

t ) where n is the outward normal unitary
vector on ∂F ′

t .
This concludes the first part of Theorem 2.
Obtaining u(t = T ) = 0 as in Theorem 1 is possible but defining the flow of ∇u is only possible through the theory

of renormalized solution (see [7]) for which we lose the topological properties of F2 and thus we thus obtain the
possibility of moving F1 into F2.

The radial symmetry is not essential. For the case of a convex Ω , instead of using Green’s functions we use
capacitory functions of balls. Let B be a ball compactly included in ω, its capacitory function cB is known to have
convex level sets and no singular points outside ω (see [12]) thus the flow of its (or minus its) gradient will drive any
subset of Ω \ ω into ω \ �B for a sufficiently long period T/3. However, since we start from rest at t = 0 we have to
go close enough in C1 norm to cB in an interval [0, T /3] with T large enough with a solution of the controlled heat
equation. This is possible due to the asymptotic behavior of the heat equation, and during that period T/3, F1 will
have been moved to a subset of Ω . The remaining argument being similar as before, we have then:
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Theorem 3. When Ω is convex and ω is any open subset compactly included in Ω the result of Theorem 2 is true
provided T is large enough.
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