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Abstract

Let x denote an elliptic diffusion process defined on a smooth compact manifold M . In a previous work, we introduced a class
of vector fields on the path space of x and studied the admissibility of this class of vector fields with respect to the law of x. In the
present Note, we extend this study to the case of degenerate diffusions. To cite this article: D. Bell, C. R. Acad. Sci. Paris, Ser. I
342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Des théorèmes de divergences dans l’espace de chemins II : le cas de diffusions dégénérées. Soit x une diffusion elliptique
définie sur une variété compacte régulière M . Dans un travail précédent, nous avons introduit une classe de champs de vecteurs sur
l’espace de chemins de x et nous avons étudié l’admissibilité de cette classe de champs de vecteur par rapport à la loi de x. Dans
la présente Note, nous étendons cette étude au cas de diffusions dégénérées. Pour citer cet article : D. Bell, C. R. Acad. Sci. Paris,
Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Let M denote a closed compact d-dimensional C∞ manifold and X1, . . . ,Xn smooth vector fields defined on M .
Consider the following Stratonovich stochastic differential equation2 (SDE) with fixed initial point o ∈ M

dxt =
n∑

i=1

Xi(xt ) ◦ dwi, t ∈ [0, T ]. (1)

Let Co(M) denote the space of continuous paths from [0, T ] into M originating at o.

Definition. A vector field Z on the path space Co(M) is admissible (with respect to the law of x) if there exists an L1

random variable Div(Z) such that the equality

E
[
(ZΦ)(x)

] = E
[
Φ(x)Div(Z)

]
(2)

holds for a dense class of smooth functions Φ on Co(M).
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In [1], we developed a method for establishing the admissibility of a class of vector fields Z on Co(M) of the form

Zt =
n∑

i=1

Xi(xt )h
i(t), t ∈ [0, T ] (3)

where hi : [0, T ] �→ R are adapted processes, i = 1, . . . , n. It was assumed in [1] that the SDE (1) is elliptic, i.e. the
vector fields X1, . . . ,Xn span T M at all points of M . The purpose of this Note is to study the admissibility of vector
fields of the form (3) in the degenerate case, i.e. when the ellipticity condition fails. This problem has also been treated
by Elworthy, Le Jan and Li using an approach based on filtering (cf. [4, Section 4.1]).

For each x ∈ M , define Ex to be the subspace of TxM spanned by the vectors X1(x), . . . ,Xn(x). Assume these
vector spaces have the same dimension for all x ∈ M , and define E to be the sub-bundle of T M , E = ⋃

x∈M Ex .
Following Elworthy, Le Jan and Li [4], we Riemannianize E by defining 〈·, ·〉 to be the inner product on each Ex

induced from the Euclidean space Rn by the map X(x) ∈ L(Rn,Ex), where

X(x)(h1, . . . , hn) ≡ Xi(x)hi .

Here, and in the sequel, we assume that whenever an index in a product is repeated, that index is summed on. Further
following [4], we define a connection ∇ on E, compatible with this metric, by

∇V Z = X(x)dV (X∗Z), Z ∈ Γ (E), V ∈ TxM,

where d represents the usual derivative of the function x ∈ M �→ X(x)∗Z(x) ∈ Rn.
We define a collection of 1-forms ωjk,1 � j, k � n, on M by

ωjk(V ) = 〈∇Xj
Xk,V 〉 − 〈∇V Xj ,Xk〉 − 〈

T (Xj ,V ),Xk

〉
, V ∈ T M,

where T is the torsion tensor of the connection ∇ .

Theorem 1. Suppose that the sub-bundle E satisfies the integrability condition

span
{[Xi,Xj ](x),1 � i, j � n

} ⊆ Ex, ∀x ∈ M. (4)

Let r = (r1, . . . , rn) be a path in the n-dimensional Cameron–Martin space and suppose h1, . . . , hn are real-valued
processes with initial value 0 satisfying the system of SDE’s

dhk = ωjk(◦dx)hj + ṙk dt, 1 � k � n. (5)

Then the vector field Z on Co(M) defined by (3) is admissible.

Sketch of proof. Let g :C0(Rn) �→ Co(M) denote the Itô map w �→ x defined by Eq. (1). Following the approach
in [1], we lift Z to the Wiener space via g, i.e. we construct a vector field r on C0(Rn) such that the following diagram
commutes

T
(
C0

(
Rn

)) dg
T M

C0
(
Rn

)
r

g M

Z

Of course, since the map g is non-differentiable in the classical sense, dg must be interpreted in the extended sense of
the Malliavin calculus. The tangent space T (C0(R

n)) is defined as the space of processes of the form
.∫

o

hs ds +
.∫

0

As ds,

where h and A are continuous adapted processes with values in Rn and the space of n × n skew-symmetric matrices
so(n), respectively (this notion of tangent space was inspired by Driver’s work [3], see also [5]).

The starting point of the proof is Eq. (3.6) in [1], which states that r is a lift of Z if and only if the following SDE
is satisfied

Xi(xt ) ◦ dhi = [Xj ,Xi](xt )h
j ◦ dwi + Xi(xt )dri . (6)
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Now the metric 〈·, ·〉 has the property V = 〈V,Xi(x)〉Xi(x), for all V ∈ Ex . In view of condition (4), we can use this
property to solve Eq. (6) for dh and obtain

dhk = 〈[Xj ,Xi](xt ),Xk(xt )
〉
hj ◦ dwi + drk.

The idea is to now decompose the diffusion coefficient in this equation into a tensorial term in Xi and a term that is
skew-symmetric in the indices i and k. To this end, we define

a
j
ik(t) = 〈∇Xj

Xi(xt ),Xk(xt )
〉 − 〈∇Xj

Xk(xt ),Xi(xt )
〉
, 1 � i, j, k � n.

Note that these terms are skew-symmetric in i and k. We then have
〈[Xj ,Xi](xt ),Xk(xt )

〉 = a
j
ik(t) + ωjk

(
Xi(xt )

)
.

Proceeding as in [1], we write the process h in Eq. (5) in the form

dhk = 〈[Xj ,Xi](xt ),Xk(xt )
〉
hj ◦ dwi + dr̃k

where

dr̃k = ṙk dt − a
j
ik(t)h

j ◦ dwi.

Thus r̃ is a lift of Z. Let Φ be a test (i.e. smooth cylindrical) function on Co(M). By definition of the lift, we have

E
[
(ZΦ)(x)

] = E
[
r̃(Φ ◦ g)(w)

] = E
[
Φ(x)Div(r̃)

]
where Div denotes the divergence operator in the classical Wiener space. The form chosen for r̃ ensures that Div(r̃)

exists (cf. Theorems 2.3 and 2.4 in [1]), and the theorem follows. �
In general, it is of interest to know if a given vector field on Co(M) admits a lift to the Wiener space. We now

show that if Hörmander’s condition holds, then the integrability condition (4) is necessary for the existence of lifts,
for almost all vector fields Z on Co(M) of the form (3).

Theorem 2. Suppose condition (4) fails at some point m ∈ M . Define a ( proper) subspace V of Rn by

V ≡ {
(c1, . . . , cn) ∈ Rn | span

{
cj [Xj ,Xk](m),1 � k � n

} ⊆ Em

}
.

Let h = (h1, . . . , hn) denote a continuous adapted process in Rn such that P(h(t0) /∈ V ) > 0 for some t0 ∈ (0, T ).
Suppose X1, . . . ,Xn satisfy Hörmander’s condition everywhere on M . Then the vector field Z on Co(M) defined
by (3) admits no lift to C0(Rn) via the Itô map.

Sketch of proof. By hypothesis, there exists 1 � k � n such that P([Xj ,Xk](m)h
j
t0

/∈ Em) > 0. This implies the
existence of a neighborhood N of m on which this condition holds. By a result of Léandre [7, Theorem II.1]),
P(xt0 ∈ N) > 0. In particular, there exists a positive stopping time τ such that with positive probability

[Xj ,Xk](xt )h
j
t /∈ Ext , ∀t ∈ [t0, t0 + τ). (7)

Now suppose there exists a lift of Z to C0(Rn). Then Eq. (6) implies

[Xj ,Xk](xt )h
j
t ◦ dwk ∈ Ext . (8)

Together, (7) and (8) imply there exists a non-vanishing continuous adapted process a = (a1, . . . , an) such that with
positive probability

ak(t) ◦ dwk = 0, ∀t ∈ [t0, t0 + τ).

However, using the Itô rules dwi dwj = δij dt, dwi dt = 0, we see this is impossible. This proves that no such lift
exists, as claimed. �

The following result, which provides a natural setting for Theorem 2, is easy to verify:
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Proposition. Suppose the SDE (1) is degenerate and the vector fields X1, . . . ,Xn satisfy Hörmander’s condition
everywhere on M . Then the set of points at which condition (4) fails is dense in M .

Remark. The lifting method was originally used by Malliavin [8] to study the hypoellipticity of the differential
operator

∑n
i=1 X2

i . In this context, it suffices to construct the lift of vector fields on M under the endpoint map
gt :w �→ xt , for fixed t > 0. Now, it is well-known that when the diffusion (1) is degenerate, Hörmander’s condition
on X1, . . . ,Xn implies the existence of lifts for all smooth vector fields on M under gt (see e.g. [8], [6], [2]). By
contrast, Theorem 2 and the proposition imply that the set of liftable vector fields on the path space of the diffusion is
very sparse. The problem of lifting vector fields at the path space level thus has a strikingly different character to that
encountered in earlier work on the endpoint problem.
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